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Abstract. A numerical method is developed for solving singular differential equations using
steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety
of first and second order problems, including linear constrained, unconstrained, and partially con-
strained first order problems, a nonlinear first order problem with irregular singularity, and two
second order variational problems.

The method is an extension of steepest descent in Sobolev spaces which is a variation of descent
based on the Euclidean gradient. The differential equation is cast as a least-squares problem yielding
a functional representing the equation. A weighted Sobolev space for the problem is chosen where the
weights are based on the functional. The gradients associated with the functional take into account
both the weights and the boundary conditions for the given equation.

Results are presented which demonstrate the improvements obtained by computing based on
weighted Sobolev gradients rather than computing based on either unweighted Sobolev gradients or
on the Euclidean gradient.

1. Introduction. A numerical method for the study of differential equations
which have linear singularities is presented. The method extends the work pioneered
by Neuberger [N5], where steepest descent based on Sobolev gradients is introduced.
Gradients arise from weighted Sobolev spaces such as those considered by Kufner [KA]
and Elschner [E] where weights are determined by the singularity of the differential
equation under consideration and by the functional representing the equation. Neu-
berger and his students have demonstrated the power of Sobolev descent for specific
problems. See [K], [G], [DM] for examples of Sobolev descent on non-singular prob-
lems and see [N2] for an example of a nonlinear second order differential equation
with nonlinear singularity arising from a problem concerning transonic flow. Exis-
tence and uniqueness arguments for singular problems in Sobolev spaces have been
given by Schuchman in [S] and by Canic and Keyfitz in [CK]. For a paper concerning
Sobolev gradients which are constructed based on the problem at hand, consider the
paper [RN]. See [A] for a general reference on Sobolev spaces.

Three types of descent are addressed: L2 descent, Sobolev descent, and weighted
Sobolev descent. For the problems studied, weighted Sobolev descent outperforms
Sobolev descent, which in turn outperforms L2 descent. The motivational problem,

2ty′(t) = y(t)
y(1) = 1,

(1)

is introduced in § 2. In § 3 the method is exhibited for solving the general class of
singular first order ordinary differential equations,

q(t)y′(t) = f(t, y(t))
k1y(a) + k2y(b) = k3

(2)
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where a, b ∈ I, f ∈ C2
I , q ∈ C1

I , and q(t) = 0 for some t ∈ I = [0, 1]. In § 5 an
alternative to traditional variational methods is offered for the second order boundary
value problems,

(t2y′)′ − u = 0
u(0) = 0
u(1) = 1

(3)

and

((1− t2)y′)′ + 2u = 0
u(0) = 0
u(1) = 1.

(4)

2. Theory and Motivational Example. Consider 2ty′ = y on I = [0, 1] with
final condition y(1) = 1 and cast the equation as a least squares minimization problem,
setting

J(u) =
∫

I

(2ju′ − u)2

for every u ∈ C1
I where j denotes the identity on I. If there existed a C1 solution,

then a zero of J would indicate this solution. The fact that there is no C1 solution
motivates the development of the spaces which follow. Let L = L2

I and 〈·, ·〉L denote
the L inner product. Define for any w ∈ C1

I which is positive almost everywhere,

Dw
1 =

{(
u

wu′

)
: u ∈ C1

I

}L×L

,

and let Hw be the space of all elements which arise as first components of elements
of Dw

1 . The inner product for Hw is given by,

〈u, v〉Hw
= 〈u, v〉L + 〈Dw

1 (u), Dw
1 (v)〉L.

In the unweighted case (w ≡ 1), we denote Dw
1 by D1 and Hw by H. It is known,

[N3] that D1 is a function and H is the Hilbert space, H1,2
[0,1]. An argument follows,

showing that Dw
1 is a function and Hw is a Hilbert space for appropriate w.

Theorem 2.1. If w ∈ C1
I is positive almost everywhere and w vanishes at some

point, t̂, then Dw
1 is a function in the sense that no two elements of Dw

1 have the same
first coordinates and distinct second coordinates.

Proof. Let

A =
{(

u
wu′

)
: u ∈ C1

I

}

so that A = Dw
1 and suppose

(
f
g

)
,

(
f
h

)
are elements of A. Let

(
an

wa′n

)
be a

sequence in A converging to
(

f
g

)
in L2 × L2 and let

(
bn

wb′n

)
be a sequence in A

converging to
(

f
h

)
in L2 × L2. Three lemmas are proved, the last resulting in the

proof of the theorem.
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Lemma 2.2. (wan)N is uniformly Cauchy on I.
Proof. If an → f in L2 then w′an → w′f in L1, thus (w′an)N is L1 Cauchy.

Similarly, (wa′n)N is L1 Cauchy. Let ε > 0 and N1 in N such that for all n,m ≥
N1,

∫
I
|w′(an−am)| < ε

2 . Let N2 in N such that for all n,m ≥ N2,
∫

I
|w(an−am)′| < ε

2 .
Let N = max{N1, N2}, t ∈ I, and n, m ≥ N. Since w arises from the singularity of
the differential equation, choose t̂ such that w(t̂) = 0. The inequality, |w(t)(an(t) −
am(t))| = | ∫ t

t̂
(wan)′ − (wam)′| ≤ ∫ t

t̂
|w(a′n − a′m)| + ∫ t

t̂
|w′(an − am)| < ε

2 + ε
2 = ε

concludes the proof of the lemma.
Lemma 2.3. | ∫ t

s
(wa′n − wb′n)| converges to zero uniformly on I.

Proof. Let ε > 0. Since (wan)N and (wbn)N are uniformly Cauchy, wan →
wf uniformly and wbn → wf uniformly. Hence, (wan − wbn) → wf − wf = 0
and there exists N1 ∈ N such that for all n ≥ N1, |w(x)an(x) − w(x)bn(x)| < ε

3
for every x ∈ I. Let N2 ∈ N such that for all n ≥ N2, ‖w′(an − bn)‖ < ε

3 . Let
n ≥ max{N1, N2} and s, t ∈ I. | ∫ t

s
wa′n − wb′n| = | ∫ t

s
(wb′n + w′bn − w′bn + w′an −

w′an − wa′n)| = | ∫ t

s
((wbn)′ − (wan)′) +

∫ t

s
(w′an − w′bn)| ≤ | ∫ t

s
((wbn)′ − (wan)′)| +∫ t

s
|w′(an − bn)| ≤ |w(t)bn(t)−w(t)an(t)−w(s)bn(s) + w(s)an(s)|+ ‖w′(an − bn)‖ ≤

|w(t)bn(t)−w(t)an(t)|+ |w(s)bn(s)−w(s)an(s)|+ ‖w′(an − bn)‖ < ε
3 + ε

3 + ε
3 = ε.

Lemma 2.4. | ∫ t

s
(g − h)| = 0 for every s, t ∈ I.

Proof. Recall, wa′n → g in L2 implies wa′n → g in L1 and wb′n → h in L2

implies wb′n → h in L1. Pick s, t ∈ I and we have | ∫ t

s
g − ∫ t

s
wa′n| ≤

∫ t

s
|g −

wa′n| → 0 and | ∫ t

s
h − ∫ t

s
wb′n| ≤

∫ t

s
|h − wb′n| → 0. Therefore, limn→∞

∫ t

s
wa′n =∫ t

s
g and limn→∞

∫ t

s
wb′n =

∫ t

s
h. We conclude | ∫ t

s
(g − h)| = | limn→∞

∫ t

s
wa′n −

limn→∞
∫ t

s
wb′n| = | limn→∞(

∫ t

s
(wa′n − wb′n))| = limn→∞ |

∫ t

s
(wa′n − wb′n)|. Thus,

| ∫ t

s
(g − h)| = limn→∞ |

∫ t

s
(wa′n − wb′n)|. Let ε > 0 and from lemma 2 choose N ∈ N

such that for all n ≥ N, | ∫ t

s
(wa′n−wb′n)| < ε for every s, t ∈ I. Then, limn→∞ |

∫ t

s
(wa′n−

wb′n)| ≤ ε for every s, t ∈ I. Hence for every ε > 0 and for every s, t ∈ I we have
| ∫ t

s
(g−h)| ≤ ε thus

∫ t

s
(g−h) = 0. This implies that g−h = 0 almost everywhere, since

if g − h 6= 0 almost everywhere then there exist x ∈ < and ε > 0 such that, without
loss of generality, g− f > 0 on the interval (x− ε, x + ε). Therefore,

∫ x+ε

x−ε
(f − g) > 0,

a contradiction. Conclude, | ∫ t

s
(g − h)| = 0 in L2 and g = h almost everywhere.

Theorem 2.5. Dw
1 is a non-expansive, closed, bounded, densely defined, linear

operator.
Proof. Dw

1 is closed by definition. Recall that Dw
1 is densely defined iff the domain

of Dw
1 is dense in L. Since polynomials on I are dense in L, and Hw is a superset of

the polynomials on I and a subset of L, Dw
1 is densely defined. For any u ∈ Hw,

‖Dw
1 u‖L

‖u‖Hw

=
‖Dw

1 u‖L

‖u‖L + ‖Dw
1 u‖L

≤ 1,

thus Dw
1 is bounded and non-expansive as an operator from Hw to L.

For the motivational problem, the weight will be the identity, j(t) = t. That H is
a proper subset of Hj may be shown by considering u(t) =

√
t ∈ Hj\H.

Theorem 2.6. Hw is a Hilbert space.
Proof. Certainly, 〈u, v〉Hw

= 〈u, v〉L + 〈Dw
1 u,Dw

1 v〉L is an inner product, thus it
suffices to show Hw is complete. If (un) is a Cauchy sequence in Hw then there exists(

un

vn

)
∈ Dw such that un = π1

(
un

vn

)
. Since (un) is Cauchy in Hw, ‖un − u‖L → 0
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Table 1
Motivational Problem

2ty′ − y = 0 y(1) = 2 N = 100

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
L 21518 208 10−5 10−2 1.3× 10−1

H 830 10 10−5 10−3 7.1× 10−2

Hw 11 1 10−5 10−5 2.7× 10−3

2ty′ − y = 0 y(1) = 2 N = 1,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
H 10,000 1290 10−10 10−4 4.1× 10−3

Hw 26 3 10−10 10−6 8.7× 10−4

2ty′ − y = 0 y(1) = 2 N = 10,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
Hw 41 53 10−10 10−8 2.8× 10−4

and ‖vn − v‖L → 0 for some
(

u
v

)
∈ L×L. Conclude that ‖un − u‖Hw

= ‖un − u‖L+

‖vn − v‖L → 0 and thus ‖un − u‖Hw
→ 0 in Hw.

The following theorem, [N3], guarantees convergence in the continuous case for
each problem in the paper. Convergence for the descrete case constitutes work in
progress. Results for singular problems have been proved for specific problems and
a generalization is forthcoming. Two theorems are available in the literature, [N5],
which apply to the ordinary differential equation, y’=y, y(0)=1.

Theorem 2.7. (Neuberger) Suppose H and K are Hilbert spaces and G ∈
L(H,K). Suppose g ∈ K, v ∈ H, Gv = g, and φ(u) = 1

2‖Gu− g‖2 for every u ∈ H.
If x ∈ H and z is the function on [0,∞) so that

z(0) = x, z′(t) = −(∇φ)(z(t)), t ≥ 0

then u = limn→∞z(t) exists and Gu = g.
Dw

1 was shown to be bounded on Hw in Theorem 2. Put v(t) =
√

t, g = 0,
H = Hw, K = <, Gu = 2Dw

1 (u)− u and

J(u) =
∫

I

(2Dj
1u− u)2

For any u ∈ Hw, J ′(u) is a linear functional, hence there esists a uniqe element which
we denote by (∇HJ), satisfying, J ′(u)(h) = 〈(∇HwJ) (u), h〉Hw

for all u, h ∈ Hw.
Putting ∇ = (∇HJ) satisfies the hypothesis of the theorem, guaranteeing convergence
in the weighted spaces.

Note that we have just redefined J . Prior to the redefinition of J , the domain of
J was C1

I which is unacceptable, as the solution to the problem is y(t) =
√

t which is
not C1. Now the domain is J is Hj .

Having defined the spaces and continuous theory, results are presented for the
motivational example and the numerical method is postponed for the general case in
§ 3. Table 1 illustrates that the number of iterations and the time required to solve
the problem decrease while the obtained accuracy increases for L, H, and Hj descent
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Fig. 1. Motivational Problem
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respectively. As the number of divisions is increased, Hj descent performs well, yet the
desired accuracy was unobtainable using L descent. For all cases considered, L and
H descent do not converge for too tight a stopping criteria or for too large a number
of divisions while Hw descent does. The numerical results indicate that the order of
magnitude of the gradient for Hw descent is typically on the order of the stopping
criteria, another quality of Hw descent which is not shared by L or H descent for
singular problems. Figure 1 shows the difference between the two descent processes.
The graph shows four lines shaded from light to dark and varying from thick to
thin. Respectively they represent the initial estimate, the Sobolev approximation to
the solution after 100 iterations, the weighted Sobolev approximation to the solution
after three iterations, and the solution itself. The advantage of the weight near the
singularity is evident from the graph. The results in Figure 1 are supported by
the following reasoning. L descent does not take the derivative of the function into
consideration, hence H descent outperforms L descent. While H descent considers
the derivative, the solution does not belong to H. Since

√
t ∈ Hj\H, Hj descent

outperforms H descent. These difficulties in the continuous setting carry over to the
numerical settings. Examples in later sections will demonstrate machine precision
results for Hw descent which L and H descent are unable to obtain.

3. Numerical Method for First Order Problems. Let k1, k2, k3, a, b ∈ <
with a < b and q ∈ C1

I . Let f : [a, b] × < → < be differentiable with respect to the
second variable. The problem is

q(t)y′(t) = f(t, y(t))
k1y(a) + k2y(b) = k3.

(5)

Descent based on each of the three gradients is considered for unconstrained, con-
strained, and partially constrained problems. Much of the notation extends and
compliments the work of Neuberger in [N1] and [N5].

Denote the Euclidean norm by ‖ · ‖L and x ∈ <m by x = (x1, . . . , xm). Suppose n
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is the number of divisions into which the interval [a, b] is partitioned and δ = (b−a)/n.
Let ε be the stopping criteria; stop when ‖ynew − y‖L < ε where y and ynew denote
successive approximations to the solution.

Define discretized versions of the identity and derivative operators, D0 : <n+1 →
<n, Dw

1 : <n+1 → <n, and Dw : <n+1 → <2n.

D0(x) =




x1+x2
2

.

..
xn+xn+1

2


 Dw

1 (x) =




(
w2+w1

2

) (
x2−x1

δ

)
.
..(wn+wn+1

2

) (xn+1−xn

δ

)


 Dw(x) =

(
D0(x)
Dw

1 (x)

)

The three discretized versions of the spaces L, H, and Hw are
(<n+1, 〈·, ·〉L

)
,(<n+1, 〈·, ·〉H

)
, and

(<n+1, 〈·, ·〉Hw

)
where

〈u, v〉Hw
= 〈D0(u), D0(v)〉L + 〈Dw

1 (u), Dw
1 (v)〉L =

n∑
k=1

(
uk+1 + uk

2

)(
vk+1 + vk

2

)
+

(
wk+1 + wk

2

)2(
uk+1 − uk

δ

)(
vk+1 − vk

δ

)

for all u, v ∈ <n+1.
Dw relates the Euclidean and Sobolev norms by ‖ · ‖Hw

= ‖Dw(·)‖L. Let y ∈ <n+1

and for all k = 1, 2, . . . , n + 1, let tk = a + (k − 1)δ and fk = f(tk, yk). Define
J : (<n+1, ‖ · ‖Hw

) → < by

J(y) =
1
2
‖Dw

1 y −D0f‖2L

=
1
2

n∑

k=1

(
qk+1 + qk

2
yk+1 − yk

δ
− fk + fk+1

2

)2

.

For x ∈ <n+1, J ′(x) is a bounded linear functional. Let (∇HwJ) (x) denote the unique
element in <n+1 satisfying J ′(x)(y) = 〈(∇HwJ) (x), y〉Hw

for all y ∈ <n+1.
One well known theorem is proved in the case of interest and determines the the

matrix, Aw. The reader is referred to [RSN] to verify the non-singular nature of the
matrix.

Theorem 3.1. If 〈·, ·〉Hw
denotes the discretized Sobolev inner product on <n+1

and 〈·, ·〉 represents the standard inner product on <n+1 then there exists a matrix Aw

in L(<n+1,<n+1) such that 〈x, y〉Hw
= 〈Awx, y〉 = 〈x, Awy〉 for every x, y ∈ <n+1.

Moreover, Aw (∇HwJ) (x) = (∇LJ) (x) for every x ∈ <n+1.
Proof. Since for every x, y ∈ <n+1,

〈x, y〉Hw
= 〈D0x, D0y〉+ 〈Dw

1 x,Dw
1 y〉

=
〈
Dt

0D0x, y
〉

+
〈
(Dw

1 )tDw
1 x, y

〉
=

〈
(Dt

0D0 + (Dw
1 )tDw

1 )x, y
〉

=
〈
Dt

wDwx, y
〉

we have, Aw = Dt
wDw. Also, for every x, y ∈ <n+1,

〈(∇LJ) (x), y〉 = J ′(x)(y)
= 〈(∇HwJ) (x), y〉Hw

= 〈Aw (∇HwJ) (x), y〉.
6



Consequently, Aw (∇Hw
J) (x) = (∇LJ) (x) for every x ∈ <n+1.

The boundary conditions are k1y(a)+k2y(b) = k3 and the canonical perturbation
space is <n+1

0 = {x ∈ <n+1 : k1x1 + k2xn+1 = 0}. Let πL denote the orthogonal
projection of <n+1 onto <n+1

0 under the Euclidean inner product and πHw
denote

the orthogonal projection of <n+1 onto <n+1
0 under the Sobolev inner product. For

x ∈ <n+1,J ′(x)<n+1
0

is a bounded linear functional. Let
(∇H0

w
J
)
(x) denote the

unique element in <n+1
0 satisfying J ′(x)(y) =

〈(∇H0
w
J
)
(x), y

〉
for all y ∈ <n+1

0 . For
all x ∈ <n+1, y ∈ <n+1

0 this yields,
〈(∇H0

w
J
)
(x), y

〉
Hw

= J ′(x)(y)
= 〈(∇HwJ) (x), y〉Hw

= 〈πHw
(∇Hw

J) (x), y〉Hw

and thus
(∇H0

w
J
)
(x) = πHw (∇HJ) (x) for all x ∈ <n+1. Applying the Reisz repre-

sentation theorem twice and using the self-adjoint property of projections repeatedly
we have for every x ∈ <n+1, y ∈ <n+1

0

〈πL((∇LJ) J)(x), y〉 = 〈((∇LJ) J)(x), y〉
= J ′(x)(y)
=

〈(∇H0
w
J
)
(x), y

〉
Hw

=
〈
Aw

(∇H0
w
J
)
(x), y

〉

=
〈
πLAw

(∇H0
w
J
)
(x), y

〉
.

This defines the linear system, πLAw

(∇H0
w
J
)
(x) = πL (∇LJ) (x), while allowing

us to solve for
(∇H0

w
J
)

without computing the projection, πHw . One observation is
in order; the system must be solved over the subspace, <n+1

0 in orderThe projection
πL must still be determined. Compute πL by defining ψ(x) = ‖x− u‖L

2
/2 and

minimizing ψ over <n+1
0 via Lagrange Multipliers to obtain

πL(x) =
(

k2(k2x1 − k1xn+1)
k2
1 + k2

2

, x2, x3, . . . , xn,
−k1(k2x1 − k1xn+1)

k2
1 + k2

2

)

The boundary conditions are handled as four separate cases. If k1 = k2 = 0
no boundary conditions are given. If both k1 and k2 are non-zero then the last row
is replaced by the boundary data, (k1, 0, ..., 0, k2) and the last entry of the gradient
vector, (∇LJ) (y), is set to zero. Initial and final value problems are handled similarly.

All the codes in the paper use optimal step size which is given by the real number
h that minimizes α(h) = J

(
y − h (∇HwJ) (y)

)
. If f is linear, h is given by

h =
‖ (∇HwJ) (y)‖2Hw〈

(∇HwJ)2(y), (∇HwJ) (y)
〉

Hw

,

else, h is computed by applying a linear search to the function, α.
Algorithm

1. Compute the matrix, Aw, and the projection, πL.
2. Choose y ∈ <n+1 satisfying the boundary conditions.
3. Compute the gradient of J at y, (∇LJ) (y).
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Table 2
Unconstrained Singular Problem

ty′ − y = 0 y0(t) = t2 No Boundary Conditions N = 100

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
L 5419 50 10−5 10−2 4.1× 10−2

H 2161 28 10−5 10−3 5.3× 10−3

Hw 8 1 10−5 10−6 9.8× 10−6

ty′ − y = 0 y0(t) = t2 No Boundary Conditions N = 10, 000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
Hw 36 45 10−15 10−10 8.7× 10−10

4. Apply πL to the matrix, Aw, and the gradient, (∇LJ) (y).
5. Make Aw nonsingular by replacing the necessary rows.
6. Solve πLAwx = πL (∇LJ) (y) for x = πHw

(∇Hw
J) (y).

7. Determine minimal h > 0 which minimizes J
(
y − hπHw

(∇Hw
J) (y)

)
.

8. Let ynew = y − hπHw
(∇Hw

J) (y).
9. If ‖ynew − y‖L < ε stop; else, put y = ynew and repeat steps 3 through 8.

4. Results for First Order Problems. Results were presented in § 2 for a
constrained problem. Results follow for an unconstrained problem, a partially con-
strained problem, and a nonlinear problem with irregular singularity.

Consider ty′ = y on I with no boundary conditions. The numerical results are
in Table 2. An initial condition y(0) = 0 is forced by the singularity, and the
one parameter family of solutions is given by z(t) = kt. The functional chosen is
J(u) =

∫
I
(D1

j u− u)2 for every u ∈ Hj .
In the case where boundary conditions are not sufficient to guarantee uniqueness,

the solution to which the algorithm will converge may be predicted and depends on
both the chosen gradient and the given initial estimate.

Theorem 4.1. If y0 is the initial estimate, steepest descent will converge to
z(t) = kt where kL = 3

∫
I
jy0, kH = 1

3

∫
I
(jy0 + y′0), and kHj = 3

2

∫
I
j(y0 + jy′0) for L

descent, H descent, and Hj descent respectively.
Proof. Only the statement associated with weighted descent is proved. Suppose

J is as stated above and α(z) = ‖y0 − z‖2Hw
. Observe that α(z) = ‖y0 − z‖2Hw

=
‖y0‖2Hw

+‖z‖2Hw
−2〈z, y0〉Hw

. Minimizing α over S = {z : z(t) = kt} yields the closest
element in Hw ∩ S. This is a quadratic equation yielding kHj as stated.

Choosing the initial function y0(t) = t2, the resulting solutions are zL(t) = 3
4 t,

zH(t) = 15
16 t, and zHw(t) = 9

8 t. The number of divisions is small so that Sobolev descent
results may be compared with the L descent results. L descent is outperformed by
Sobolev descent, thus L and H results are then omitted so that the number of divisions
and accuracy desired may be increased.

Consider the partially constrained problem, (t− 1
2 )y′ = y with y(0) = − 1

2 . Solu-
tions are given by,

z(t) =
{

c1(t− 1
2 ) if x ∈ [0, 1

2 ]
c2(t− 1

2 ) if x ∈ [ 12 , 1]

Having specified only an initial condition, the value for c2 is not unique. As in the last
example, the solution may be determined. If y0 is the initial guess, solution, z, will be

8



Table 3
Partially Constrained Singular Problem

(t− 1
2
)y′ − y = 0 y(0) = −1

2
N = 1000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
H 526 66 10−5 10−2 1.5× 10−1

Hw 7 1 10−5 10−7 4.3× 10−6

(t− 1
2
)y′ − y = 0 y(0) = −1

2
N = 10,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
H 764 497 10−6 10−3 3.4× 10−2

Hw 13 17 10−10 10−10 1.8× 10−9

the function which minimizes ‖y0−z‖ in whichever norm is chosen. L descent is again
outperformed by H descent and Hw descent so these results are omitted here allowing
an increase in the number of divisions and an increase in the desired accuracy. H
descent yields the solution above with c1 = 1 and c2 = 3

2 while Hw descent yields
c1 = 1 and c2 = 15

4 .
Hw descent outperforms H descent by a factor of 66 in time and by 105 in accu-

racy. After increasing the number of divisions, the time factor remains 66, however,
the accuracy is improved to 107. This trend persists in all examples considered: as
the number of divisions is increased, the differential between the obtainable accuracy
between Hw and H descent increases.

Observe in Table 3 that a less strict stopping criteria is used for H descent than
for Hw descent. This is the ‘best’ result obtainable for the H descent. Superior results
to the ones listed were unobtainable since the order of magnitude of ∇HJ is 10−16 or
machine precision.

Consider the nonlinear problem with irregular singularity,

t2y′ = 2ty + y2

y(1) = 1(6)

which has the solution, y(t) = t2/(2 − t). Results are given in Table 4 which shows
the marked improvements obtained by considering the weighted spaces.

We conclude this section by observing that similar results are obtained for prob-
lems where series solutions are not obtainable such as (t − 1

4 )(t − 3
4 )y′ = y with an

initial condition at any one of the interior points t = 0, t = 1
4 , t = 3

4 , or t = 1. Hence
the algorithm applies where algorithms based on expansion arguments do not.

5. Second Order Problems. Two approaches to this problem were imple-
mented. The method used was to apply steepest descent directly to J. The alternative
approach [N1], [N2] was to form the functional φ(u) = 1

2‖ (∇HwJ) (u)‖2 whose zeroes
are critical points of J. Both methods were successful, but the latter requires solving
two systems of equations per iteration. Since neither had superior accuracy results
and the alternative approach was computationally inferior, only the former approach
is presented. For problems where the first method tends to ‘fall off’ the critical points,
the latter method is appropriate and, surprisingly, requires minimal alteration (about
3 lines) of the code.

The first problem considered is to solve Ku = 0 where K is defined by Ku =
(t2u′)′−u. Using the method of series solutions to seek u ∈ C0

I ∩C2
(0,1] such that u(0) =

9



Table 4
Nonlinear Problem with Irregular Singularity

t2y′ − 2ty + y2 = 0 y0(t) = t y(1) = 1 N = 100

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
L 4799 56 10−5 10−2 1.4× 10−1

H 402 4 10−5 10−3 1.0× 10−1

Hw 23 1 10−5 10−4 1.7× 10−2

t2y′ − 2ty + y2 = 0 y0(t) = t y(1) = 1 N = 1, 000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
H 5000 780 10−8 10−3 5.0× 10−2

Hw 353 56 10−8 10−5 4.3× 10−3

t2y′ − 2ty + y2 = 0 y0(t) = t y(1) = 1 N = 10, 000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
Hw 331 409 10−5 10−5 5.4× 10−3

0 and u(1) = 1 yields u(t) = c1t
−1+

√
5

2 + c2t
−1−√5

2 where only the first summand sat-
isfies the equation, boundary conditions, and space limitations. The solution t

−1+
√

5
2

is in Hj\H. Descent is based on subspaces of L, H, and Hj and the three subspaces
based on the boundary conditions are L0 := {h ∈ L : h(0) = 0 = h(1)}, H0 = H ∩L0,
and H0

j = Hj ∩ L0. All three functionals agree on the space C := C0
I ∩C2

(0,1], and we
abuse the notation labeling them all J and setting

J(u) =
1
2

∫

I

j2(u′)2 + u2.

Ignoring boundary conditions for the moment, the motivation may be summarized
in one sentence. If j(t) = t and u ∈ Hj then J ′(u)(h) =

∫
I
j2u′h′ + uh = 〈u, h〉Hj

,

and we naturally seek a critical point of J in the space
(
Hj , 〈·, ·〉Hj

)
. In practice,

the gradient takes into consideration both the weight and the boundary conditions as
outlined in § 3. Let u ∈ C ⊂ L0 and J ′(u) is a bounded linear operator thus, there
exists a unique element (∇L0J) satisfying

〈(∇L0J) (u), h〉L0 = J ′(u)(h)

=
∫

I

j2u′h′ + uh

=
∫

I

((−j2u′)
′
+ u)h

= −
∫

I

hKu

= 〈h,−PLKu〉L0 ,

for every h ∈ L0, where PL : L → L0 is the orthogonal projection. The parallel in the
Hilbert space H0 is given by

J(u) =
1
2

∫

I

j2(D1u)2 + u2.(7)

10



Table 5
Variational Problem

t2y′′ + 2ty′ − y = 0 y(0) = 0 y(1) = 1 N = 100

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.
L 10, 000 41 10−6 10−2 1.4× 10−1

H 538 2 10−6 10−4 1.8× 10−2

Hw 1 1 10−6 10−5 1.9× 10−3

t2y′′ + 2ty′ − y = 0 y(0) = 0 y(1) = 1 N = 1,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

H 151 4000 10−8 10−4 1.3× 10−2

Hw 1 2 10−8 10−6 4.8× 10−4

t2y′′ + 2ty′ − y = 0 y(0) = 0 y(1) = 1 N = 100,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

Hw 14 3 10−16 10−9 2.8× 10−6

For u ∈ C and h ∈ H0,

〈(∇H0J) (u), h〉H0 = J ′(u)(h)

=
∫

I

j2D1uD1h + uh

=
〈(

h
D1h

)
,

(
u

j2D1u

)〉

L×L

=
〈(

h
D1h

)
, PH

(
u

j2D1u

)〉

L×L

=
〈

h, π1PH

(
u

j2D1u

)〉

H0

where

PH : L× L →
{(

u
D1u

)
: u ∈ H0

}

is the orthogonal projection and π1 : < × < → < such that π1

(
α
β

)
= α. As in § 3,

the chosen weight is the square root of the function in the integrand of the functional
resulting from the singularity in the differential equation. In this case the singularity
is t2 which appears again in the functional.

The parallel in the Hilbert space H0
j is given by

J(u) =
1
2

∫

I

(Dj
1u)

2
+ u2.(8)

For u ∈ C and h ∈ L0,

〈(
∇H0

j
J
)

(u), h
〉

Hj

= J ′(u)(h)
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=
∫

I

Dj
1uDj

1h + uh

=
〈(

h
Dj

1h

)
,

(
u

Dj
1u

)〉

L×L

=
〈(

h
Dj

1h

)
, PHj

(
u

Dj
1u

)〉

L×L

=
〈

h, π1PHj

(
u

Dj
1u

)〉

H0
j

where

PHj
: L× L →

{(
u

Dj
1u

)
: u ∈ H0

j

}

is the orthogonal projection. This exposition is summarized in the following theorem.
Theorem 5.1. For all u ∈ C, the gradients with respect to the Hilbert spaces

L0, H0, and H0
j are (∇L0J) (u) = −PLKu, (∇H0J) (u) = π1PH

(
u

j2D1u

)
, and

(∇H0
w
J
)
(u) = π1PHj

(
u

Dj
1u

)
. The question is: Which of the equations (∇LJ) (u) =

0 (Euler’s equation), (∇HJ) (u) = 0, or (∇HwJ) (u) = 0 is the appropriate equation
to consider for computing on variational problems concerning singular differential
equations? The results in Table 5 and 6 indicate that the latter is the superior
choice. Discretizing the functional yields,

J(u) =
1
2

n∑

k=1

(
tk+1 + tk

2

)2(
uk+1 − uk

δ

)2

+

(
uk+1 + uk

2

)2

.

Since πL(x) = (0, x1, . . . , xn, 0) and (∇LJ) (u) = −Ku, we have

(∇L0J) (u) =

(
0, . . . ,−t2k

uk−1 − 2uk + uk+1

δ2
− 2tk

uk+1 − uk−1

δ
+ uk, . . . , 0

)
.

The algorithm from § 3 may now be implemented.
Figure 2 exhibits the difference between the weighted and non-weighted descent

processes. The graph shows four curves, shaded from light to dark and varying from
thick to thin. Respectively they represent the initial estimate, the Sobolev approxi-
mation to the solution after three iterations, the weighted Sobolev approximation to
the solution after three iterations, and the solution itself. The advantage of the weight
near the singularity is clear from the graph. The solution and the weighted Sobolev
approximation to the solution are already indistinguishable by three iterations. Table
5 represents the numerical results obtained using each of the above methods. Observe
the decrease in both time and iterations required and the increase in both average
absolute accuracy and maximum absolute accuracy.

The improved results were expected and a defense of the reasoning follows. Nec-
essary conditions are given in [CH] in order that satisfying Euler’s equation be a
necessary condition for existence of an extremal point; however, this problem does
not satisfy these conditions. The difficulty in the continuous case translates over to
the poor numerical performance in solving (∇LJ) = 0. Similarly, seeking the solu-
tion, t

−1+
√

5
2 which does not belong to the space H, makes solving (∇HJ) = 0 an

unpromising task. This leaves the equation (∇HwJ) = 0 which indeed performs the
best.

12



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 2. Variational Problem

The second problem is to solve, Ku = 0 where Ku = ((1 − t2)u′)′ + 2u on I
with u(0) = 0 (forced initial condition), u(1) = 1, and u ∈ C2

I . General solutions are
u(t) = c1t + c2

2 t ln( 1+t
1−t ) and only u(t) = t satisfies the boundary conditions. To

obtain this solution, consider the functional

J(u) =
1
2

∫

I

(1− j2)(u′)2 + u2

and define the three distinct functionals which parallel those from the previous section.
Let L0 := {h ∈ L : h(0) = 0 = h(1)}, H0 = H ∩ L0, and H0

w = Hw ∩ L0. For u ∈ C2
I

and h ∈ L0,

〈(∇L0J) (u), h〉L0 = J ′(u)(h)

=
∫

I

(1− j2)u′h′ + uh

=
∫

I

((−(1− j2)u′)
′
+ u)h

= −
∫

I

hKu

= 〈h,−PLKu〉L0 ,

where PL : L → L0 is the orthogonal projection.
The parallel in H is given by

J(u) =
1
2

∫

I

(1− j2)(D1u)2 + u2

and for u ∈ C2
I and h ∈ H0,

〈(∇H0J) (u), h〉H0 = J ′(u)(h)
13



Table 6
Legendre’s Equation

(1− t2)y′′ − 2ty + 2y = 0 y(0) = 0 y(1) = 1 N = 100

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

L 5948 24 10−6 10−1 6.6× 10−1

H 1998 7 10−6 10−6 3.7× 10−5

Hw 64 1 10−6 10−7 8.0× 10−6

(1− t2)y′′ − 2ty + 2y = 0 y(0) = 0 y(1) = 1 N = 10,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

H 2142 82 10−6 10−6 3.4× 10−5

Hw 85 3 10−6 10−6 1.2× 10−5

(1− t2)y′′ − 2ty + 2y = 0 y(0) = 0 y(1) = 1 N = 100,000

Gradient Iterations Seconds Residual Avg. Abs. Err. Max. Abs. Err.

Hw 325 125 10−15 10−14 1.7× 10−14

=
∫

I

(1− j2)D1uD1h + uh

=
〈(

h
D1h

)
,

(
u

(1− j2)D1u

)〉

L×L

=
〈(

h
D1h

)
, PH

(
u

(1− j2)D1u

)〉

L×L

=
〈

h, π1PH

(
u

(1− j2)D1u

)〉

H0

where

PH : L× L →
{(

u
D1u

)
: u ∈ H0

}

is the orthogonal projection. As in the previous section the weight chosen is the
square root of the function in the functional which results from the singularity in the
differential equation. In this case w(t) =

√
1− t2.

The parallel in H√
1−j2 is given by

J(u) =
1
2

∫

I

(D
√

1−j2

1 u)
2

+ u2(9)

and for u ∈ H√
1−j2 , h ∈ H0√

1−j2
,

〈(∇H0
w
J
)
(u), h

〉
= J ′(u)(h)

=
∫

I

D

√
1−j2

1 uD

√
1−j2

1 h + uh

=
〈(

h

D

√
1−j2

1 h

)
,

(
u

D

√
1−j2

1 u

)〉

L×L

=
〈(

h

D

√
1−j2

1 h

)
, PH√

1−j2

(
u

D

√
1−j2

1 u

)〉

L×L
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=
〈

h, PH√
1−j2

π1

(
u

D

√
1−j2

1 u

)〉

H0√
1−j2

where

PH√
1−j2

: L× L →
{(

u

D

√
1−j2

1 u

)
: u ∈ H0√

1−j2

}

is the orthogonal projection. Discretizing the functional,

J(u) =
1
2

n∑

k=1

(
1−

(
tk+1 + tk

2

)2
)(

uk+1 − uk

δ

)2

+

(
uk+1 + uk

2

)2

Since πL(x) = (0, x1, . . . , xn, 0) and (∇LJ) (u) = −Ku, the gradient depending
on the space and boundary conditions is

(∇L0J) (u) =
(

0, . . . ,−(1− t2k)
uk−1 − 2uk + uk+1

δ2
+ 2tk

uk+1 − uk−1

δ
− 2uk, . . . , 0

)
.

Table 6 demonstrates the success associated with these problems. The algorithm is
parallel to the one from the preceding section. Note the machine precision results.

6. Conclusions. Mathematicians and scientists have oft sought solutions to dif-
ferential equations using descent based on the Euclidean gradient. The numerical
work in this paper indicates that the choice of the underlying space and gradient are
crucial for developing efficient numerical methods.

Throughout the paper, weighted descent outperforms both Sobolev descent and
Euclidean descent for singular problems. Weighted descent is an extension of the
standard descent, thus once the effort has been put forth to implement the non-
weighted descent process, little extra effort is required to implement the weighted
descent and superior results can be expected.

The versatility of the algorithm has been demonstrated by considering linear
constrained, unconstrained, partially constrained first order problems, a nonlinear
first order problem with irregular singularity, as well as two variational problems. A
report applying the method to singular partial differential equations is forthcoming.

Boundary conditions are maintained at each step of the descent process guaran-
teeing exact boundary conditions for the solution and the method gives results on a
small number of divisions which are representative of the results obtained on a large
number of divisions making the method a candidate for multigrid problems.

Convergence results for the discrete case have been shown for specific problems
and a general result is forthcoming.

All work was performed on a NeXTstation 33 MHz 68040 Unix platform using
the GNU C compiler. Codes for the problems and Mathematica codes for computing
the necessary matrices are available from the author by e-mail at math-wtm@nich-
nsunet.nich.edu.
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