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Abstract This paper studies the joint distribution of the surplus immedi-
ately before ruin and the deficit at ruin under constant force of interest.
A Laplace transformation technique has been used to establish an explicit
expression for the joint distribution function with zero initial reserve. Nu-
merical computation using this alternative expression is quick and easy in the
case of exponential, gamma and Pareto claim sizes. Moreover, a numerical
method has been developed to efficiently approximate the joint distribution
in case of non-zero initial reserve.
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1 Introduction

The ruin problem for a compound Poisson risk model with constant force
of interest has been considered by several authors. Gerber, Goovaerts, and
Kaas (1987) considered the probability that ruin occurs with initial surplus
u. In their paper, an integral equation satisfied by the distribution of the
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severity of ruin was obtained. Later, Dufresne and Gerber (1988) introduced
the distribution of the surplus immediately prior to ruin in the classical
compound Poisson risk model. Gerber and Shiu (1997,1998) investigated
the joint distribution of the time of ruin, and the deficit at ruin. Cai and
Dickson (2002) studied the expected value of a discounted penalty function
at ruin where the “penalty” is defined as simply a function of the surplus
immediately prior to ruin and the deficit at ruin. Recently, J. Šiaulys and R.
Asanavičiūtė (2006) obtained the asymptotes of the Gerber-Shiu discounted
penalty function in the classical Lundberg model. Yang and Zhang (2001)
studied the joint distribution of the surplus immediately before and after
ruin.
In this study, using a similar method to that in Yang and Zhang (2001), an
explicit expressions for the joint distribution function with zero initial reserve
and constant force of interest has been found. These formulas can easily be
used for computation at least in the case in which the claim distribution is
exponential, gamma or Pareto. In those claim distributions the solutions of
the joint distribution have been found for different parameters. Moreover,
using Euler’s method the joint distribution of the surplus immediately before
and after ruin with non-zero initial surplus can be effectively approximated.
An example illustrates the computational method for a Pareto claim size.

2 Definitions and notation

Suppose Nt is the number of claims occurring in an insurance portfolio in
the time interval (0, t]. Assume that {Nt, t ≥ 0} is a homogeneous Poisson
process with intensity λ. Let Yi, i = 1, 2... denote the claim sizes which are
identically independently distributed positive random variables with common
distribution function F (y), where F satisfies F (0) = 0. Suppose the surplus
at any time t is denoted by Ut. Also the claim amounts are independent of
the claim number process. Let St denote the accumulated amount of the

claims occurring in the time interval (0,t], that is, St =
Nt∑
j=1

Yj with St = 0

if Nt = 0. Assume the company has an initial reserve of u and receives
premium income at rate c per unit time. Assume it also receives interest on
its reserves with the force of interest δ, where δ is defined as δ = ln(1 + i)
with i being the effective rate of interest. Since the surplus at future time is
unknown,{Ut} is a continuous-time stochastic process. From the preceding
definitions,

Ut = ueδt + c

∫ t

0

eδ(t−v)dv −
∫ t

0

eδ(t−v)dSv.

The concern here is the event that ruin occurs, i.e., Ut becomes negative for
some t. Thus the ruin time is defined as

T =

{
inf{t; Ut < 0} if Ut < 0 for some t > 0
∞ if Ut ≥ 0 for all t > 0 .

Two important random variables in connection with the time of ruin T are



Joint distribution of the surplus before and after ruin 3

UT+ , the deficit at ruin, and UT−, the surplus immediately before the time of
ruin, where T− denotes the time immediately prior to ruin and T+ denotes
the time immediately after ruin. Consider the probability

Hδ(u; x, y) = Pr(T < ∞, UT+ ≥ −y and UT− ≤ x).

This is the joint distribution of the surplus immediately before ruin and the
deficit at ruin under force of interest δ, where x and y are positive variables.
For simplicity H(u) will be used for Hδ(u; x, y). Note that with initial surplus
u the ruin probability is defined as ψ(u) = Pr(T < ∞). Thus, by definition,
H(u) → ψ(u) as x and y →∞.

3 H(u) for zero initial reserve

Cai and Dickson (2002) and Yang and Zhang (2001) studied H(0), the initial
value of H(u) when the initial surplus is zero. The following theorem extends
and complements their work, yielding an alternative expression for H(0)
which is numerically straightforward and easy to compute. In the following,

the Laplace transform of G(u) will be denoted by Ĝ(s) =

∫ ∞

0

G(u)e−su du .

The ideas developed lead to the proof of the following central theorem.

Theorem 1.

H(0) =

λ

∫ ∞

0

Ĉ(s)I(s) ds

c

∫ ∞

0

I(s) ds

where

I(s) = exp

{∫ s

1

λ− λ(̂dF )(t)− tc

tδ
dt

}

and
C(u) = [F (u + y)− F (u)] 1[0,x](u).

Proof: Ruin can not occur before the first claim with initial surplus u ≥ 0.
Therefore, consider the conditional expectation of ruin given the first claim
time T1 and the first claim amount Y1. Given that T1 = t and Y1 = z, the

reserve before the first claim is ueδt + c eδt−1
δ

, and the reserve immediately

after the first claim is ueδt + c eδt−1
δ
− z . From Yang and Zhang (2001), H(u)

can be written as

H(u) = E
[
1[UT−≤x and UT+≥−y,T<∞]

]

= E
[
E

[
1[UT−≤x and UT+≥−y,T<∞] | T1, Y1

]]

= E
[
1

[ueδT1+c eδT1−1
δ

−Y1<0]
1[UT1−≤x and UT1+≥−y,T<∞]

]

+E

[
H

(
ueδT1 + c

eδT1 − 1

δ
− Y1

)
1

[ueδT1+c eδT1−1
δ

−Y1≥0]

]
.
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Considering two different cases namely u ≤ x and u > x, the above equation
can be written as

H(u) =

∫ ln[(δx+c)/(δu+c)]/δ

0

∫ ueδt+c eδt−1
δ

+y

ueδt+c eδt−1
δ

λe−λt dF (z)dt1[0,x](u)

+

∫ ∞

0

∫ ueδt+c eδt−1
δ

0

λe−λtH(ueδt + c
eδt − 1

δ
− z) dF (z)dt.

By substituting s = ueδt + c eδt−1
δ

and after simplification the above expres-
sion can be written as

H(u) =

∫ x

u

λ(c + δu)λ/δ(c + δs)−λ/δ−1[F (s + y)− F (s)] ds1[0,x](u)

+

∫ ∞

u

∫ s

0

λ(c + δu)λ/δ(c + δs)−λ/δ−1H(s− z)dF (z)ds.

H(u) is absolutely continuous with respect to u. Thus, differentiation of the
above expression with respect to u gives

H ′(u) = λ
λ

δ
(c + δu)λ/δ−1δ

∫ x

u

(c + δs)−λ/δ−1[F (s + y)− F (s)] ds1[0,x](u)

−λ(c + δu)λ/δ(c + δu)−λ/δ−1[F (u + y)− F (u)]1[0,x](u)

+λ
λ

δ
(c + δu)λ/δ−1δ

∫ ∞

u

(c + δs)−
λ
δ
−1

∫ s

0

H(s− z) dF (z) ds

−λ(c + δu)
λ
δ (c + δu)−

λ
δ
−1

∫ u

0

H(s− z) dF (z).

Simplifying

(c + δu)H ′(u) = λH(u)− λ

∫ u

0

H(u− z) dF (z)

−λ[F (u + y)− F (u)]1[0,x](u) (3.1)

yields

cH ′(u)+δuH ′(u) = λH(u)−λ

∫ u

0

H(u−z) dF (z)−λ[F (u+y)−F (u)]1[0,x](u).

Multiply both sides by e−su and integrate with respect to u from 0 to ∞ to
obtain
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∫ ∞

0

cH ′(u)e−su du +

∫ ∞

0

δuH ′(u)e−su du = λ

∫ ∞

0

H(u)e−su du

−λ

∫ ∞

0

∫ u

0

H(u− z) dF (z)e−su du

−λ

∫ ∞

0

[F (u + y)− F (u)]1[0,x](u)e−su du

which is, in terms of the Laplace transform,

cĤ ′(s) + δûH ′(s) = λĤ(s)− λĤ(s)(̂dF )(s)− λĈ(s) (3.2)

where

cĤ ′(s) =

∫ ∞

0

cH ′(u)e−su du

and
C(u) = [F (u + y)− F (u)]1[0,x](u).

For any function H(u) the transform of the first derivative property suggests

Ĥ ′(s) = sĤ(s)−H(0). (3.3)

Moreover, by the derivative-of-transform property ûH ′(s) = − d

ds
Ĥ ′(s).

After simplification equation (3.2) can be written as

d

ds
Ĥ ′(s) + Ĥ ′(s)

[
λ− λ(̂dF )(s)− sc

sδ

]
= λ

H(0)

sδ
(̂dF )(s)− λH(0)

sδ
+

λĈ(s)

δ
.

This is a linear differential equation and the following lemma proves that the

integrating factor I(s) = exp

{∫ s

1

λ− λ(̂dF )(t)− tc

tδ
dt

}
is integrable.

Lemma 1. If d̂F
′
(0) is finite, then I(s) is integrable.

Proof: Consider first I(∞) = lim
s→∞

I(s) = exp

{∫ ∞

1

λ− λ(̂dF )(t)− tc

tδ
dt

}
.

Because the Laplace transform d̂F is positive and decreasing to zero,

lim
t→∞

λ− λ(̂dF )(t)− tc

tδ
= lim

t→∞
λ− λ(̂dF )(t)

tδ
− c

δ
= −c

δ
.
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Therefore, lim
s→∞

∫ s

1

λ− λ(̂dF )(t)− tc

tδ
dt = −∞ and I(∞) = 0.

Now consider I(0) = lim
s→0

I(s) = exp

{∫ 0

1

λ− λ(̂dF )(t)− tc

tδ
dt

}
.

Let g = d̂F . Since g is differentiable and g′(0) is finite,

lim
t→0

λ− λ(̂dF )(t)− tc

tδ
= lim

t→0

λ(1− g(t))

tδ
− c

δ
= lim

t→0

λg′(t)
δ

− c

δ
=

λg′(0)− c

δ
.

Thus, each of I(∞) and I(0) is finite, concluding the proof.

Integrating from 0 to ∞ the above equation yields
∫ ∞

0

(Ĥ ′(u)I(s))′ ds =

∫ ∞

0

λ
H(0)

sδ
(̂dF )(s)I(s) ds−

∫ ∞

0

λH(0)

sδ
I(s) ds

+

∫ ∞

0

λĈ(s)

δ
I(s) ds.

Even though the natural domain of the Laplace transform is the open interval

(0,∞), Ĥ ′(u) will still be defined at s = 0 because H ′(u) is integrable. Thus,
the transform will be continuous from the right at s = 0. Thus, from equation

(3.3), Ĥ ′(0) = −H(0). Moreover, from the integrability of I(s) it can be
concluded that I(s) decays exponentially as s →∞. Solving for H(0) yields

H(0) =

∫ ∞

0

Ĉ(s)I(s) ds

δI(0)

λ
−

∫ ∞

0

1

s
(̂dF )(s)I(s) ds−

∫ ∞

0

1

s
I(s) ds

=

∫ ∞

0

Ĉ(s)I(s) ds

δI(0)

λ
+

∫ ∞

0

δ

λ
(I(s))′ ds +

∫ ∞

0

c

λ
I(s) ds

.

=

λ

∫ ∞

0

Ĉ(s)I(s) ds

c

∫ ∞

0

I(s) ds

.

Concluding the proof.

4 Computing H(0) for different claim size dis-

tribution

The following examples deal with the exponential, gamma and Pareto claim
sizes. In all of these cases the above equation of H(0) has been used so
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Table 4.1: Illustration of H(0) for exponential(1) claims for λ = 1 and δ =
0.05

Premium Income(c) x y H(0)
3 3 3 0.29497
5 3 3 0.17872
10 3 3 0.08987
2 1 2 0.26814
2 30 30 0.47865
2 100 100 0.47870
2 200 200 0.47870
5 100 10 0.19756
5 40 40 0.19757
5 50 50 0.19757
5 100 100 0.19757

that for specific values of c, λ, δ, x and y numerical values of H(0) can be
calculated. The obtained values of H(0) in Table 4.1-4.3 are identical to those
of H(0) obtained from the definition of H(0) provided by Cai and Dickson
(2002). However, the expression obtained here is easier to compute.

4.1 Exponential claims

Consider the exponential claim size distribution, i.e. f(x) = θe−θx, x ≥ 0.
The methodology described here will work for arbitrary θ. For simplicity,
set θ = 1, so that the claim size has a mean 1. Maple has been employed
to calculate H(0) for different parameters. Maple’s numerical integration by
the Gaussian quadrature method has been used in all the following examples.
In Table 4.1 for several values of c, x and y the evaluation of H(0) has been
shown when λ = 1, δ = 0.05 and the claim is exponentially distributed with
mean claim size 1.
It can also be observed that H(0) is decreasing for fixed values of λ, δ as the
values of c increasing.That is, considering all other parameters fixed if the
premium rate has been increased H(0) decreases. Moreover, the higher the
values of x or y the higher the values of H(0). Also, it can be observed that
for large values of x and y, H(0) converges to a number which happens to
be the ruin probability with zero initial reserve, ψ(0), since H(u) → ψ(u) as
x and y →∞.

4.2 Gamma claims
In the line of automobile physical damage insurance, a claim event is an
incident causing damage to an insured automobile. The claim amount will
not have wide variability. For this reason, Bowers, Hickman, Gerber, Jones
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Table 4.2: Illustration of H(0) for gamma (2,2) claims for λ = 1 and δ = 0.05

Premium Income(c) x y H(0)
3 3 3 0.38368
5 3 3 0.26290
10 3 3 0.13584
2 1 2 0.13629
2 1 3 0.20744
2 10 10 0.96974
2 30 30 0.99939
2 100 100 0.99939
5 100 10 0.71564
5 50 50 0.73328
5 100 100 0.73328

and Nesbit (1989) claim that the gamma distribution has given reasonable
fit to data and has been used on occasion for the claim amount distribution.
Consider the gamma claim size distribution, i.e.

f(x; α, θ) =
xα−1e−x/θ

θαΓα
, x ≥ 0.

This methodology will work for any α and arbitrary θ. Table 4.2 shows
several values of H(0) for various values of underlying parameters, namely
α = 2, θ = 2,λ = 1 and δ = 0.05.
From Table 4.2 it has been observed that H(0) is decreasing for fixed values
of x, and y as the values of c increasing. Moreover, as in the exponential
case, considering all other parameters constant if the values of x and y are
increased, the values of H(0) increases rapidly and converges to some point
(ruin probability). However, in case of gamma claim size, H(0) approaches
to unity very fast for lower premium rate (e.g. c = 2).

4.3 Pareto claims
The Pareto distribution is very useful in modeling claim sizes in insurance,
due in large part to its extremely thick tail. For example, in the line of fire
insurance, the claim event is a fire in an insured structure that creates a loss.
Because fires cause heavy damage, adequate probability should be assigned
to the higher claim amounts. In actuarial literature, Bowers, Hickman, Ger-
ber, Jones and Nesbit (1989) suggested Pareto distribution in such case. The
Pareto distribution can be used to model any variable that has a minimum
value and for which the probability density decreases geometrically towards
zero. Considering the case when the claim sizes are Pareto, i.e

f(x; θ, α) =

{
αθα

xα+1 if x > θ > 0, α > 0
0 otherwise .
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Table 4.3: Illustration of H(0) for Pareto claims for θ = 2, λ = 1 and δ = 0.05

Premium Income(c) x y H(0) with α = 0.9 H(0) with α = 2
5 3 3 0.23252 0.38362
10 3 3 0.12916 0.19773
2 100 100 0.96367 0.99855
2 500 500 0.99131 0.99919
2 1000 1000 0.99533 0.99922
6 5 4 0.31024 0.42596
5 4000 4000 0.99476 0.71772
5 5000 5000 0.99541 0.71771

It should be noted that in the actuarial literature, most of the studies employ
not the classical Pareto distribution but the Pareto distribution of the above
form. As before, Maple has been used to obtain numerical solutions of H(0)
for different parameters. Since the mean of Pareto does exist only for α > 1,
infinite mean claim size is of special interest. Thus both the finite mean claim
size (α = 2) and infinite mean claim size (α = 0.9) have been considered.
In Table 4.3 the larger values of x and y have been considered to show the
convergence of H(0). From Table 4.3 it has also been observed that H(0) is
a decreasing function of c for fixed values of x, and y. For smaller premium
rate (e.g. c = 2), H(0) approaches to unity very fast both in Pareto and
gamma claim sizes compared to the exponential claim sizes. This behavior
could be explained by the heavier tails of gamma and Pareto than that of
exponential.

5 Approximating H(u)

In this section Euler’s method has been used to approximate the joint distri-
bution of surplus immediately before and after ruin, H(u) for u > 0. Euler’s
method has been used in actuarial mathematics by several authors. For ex-
ample, Dickson, Hardy and Waters (2009) evaluated policy values by solving
Thiele’s differential equation numerically by the Euler’s method. A general
description of Euler’s method can be found at Burden and Faires (2004).
Equation (1) of section 3 has been used as the basis for this numerical method
of approximating H(u). Using the obtained value of H(0) from the previous
section, it’s possible to find H ′(0) from equation (1). Considering u = 0 and
x > 0 in equation (1)

H ′(0) =
λH(0)

c
− λF (y)

c
.

Euler’s method has been employed to approximate H(ε) for ε > 0. By this
method H(ε) can be written as the value of H(0) plus the time step multiplied
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by the slope of the function. In other words,

H(ε) ≈ H(0) + εH ′(0).

Likewise,

H(2ε) ≈ H(ε) + εH ′(ε).

Thus, H ′(ε) needs to be approximated from equation (3.1). Here,the integral
part of the equation (3.1) has been approximated by the trapezoid rule. In
other words,

∫ ε

0

H(ε− z) dF (z) =

[
H(ε) + H(0)

2

]
∗ [F (ε)− F (0)].

With H(ε) and H ′(ε) in hand it is just a routine coding to find H(2ε) and
H ′(2ε) and so on. As expected the smaller the values of ε the better this
approximation likely to be. Matlab has been used to approximate H(u).

5.1 Example: Pareto claim size

The above mentioned method discussed in Section 5 can be applied to all
claim size distributions. For illustration purposes Pareto claim size dis-
tribution has been considered. H(u) has been numerically approximated
for different step sizes, namely, ε = 0.1, ε = 0.01 and ε = 0.001. For
x = 5, y = 4, c = 6, λ = 1, θ = 2, α = 0.9 and δ = 0.05, H(u) has been
approximated numerically. For the above set of parameters it has been found
that H(0) = 0.31024 (Table 4.3). Smaller x, y values have been chosen so
that the effect of the indicator function on H (Equation 3.1) can be more
readily seen. However, for larger x, y values this method of approximation
works even better. This numerical method depends on the fact that an ef-
fective method of computing H(0) is available. Approximation of H(u) has
been illustrated in Figure (5.1). It has been observed that the values of H(u)
have settled down for different step sizes which shows that the method used
to approximate H(u) for u > 0 is effective and straightforward.

6 Concluding remarks

Cai and Dickson (2002) note that ruin functions are very complicated when
δ > 0. This study extends the work of Cai and Dickson (2002) and Yang and
Zhang (2001) and derives the followings: an exact expression for H(0) and a
numerical approximation method of H(u). For both occasions numerical ex-
amples have been provided. Other numerical approaches could be employed
to justify the nature of H(u) obtained in Section 5.
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Figure 5.1: Convergence of H(u) for Pareto (0.9,2) claim.
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