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Calculus: The Importance of Precise Notation

William S. Mahavier and W. Ted Mahavier

Abstract: The careful use of notation and language in the statement of both the

definitions and problems of calculus can begin the process of making students

mathematically literate while allowing them to enjoy working on challenging pro-

blems and applications without the aid of numerous examples. Engaging the students

to participate in the precise use of the language inculcates a philosophy of careful use

of language that benefits all students regardless of major. Not only will this benefit

those few students who decide to major in mathematics, but the precision of language

will especially benefit both majors and non-majors outside of their mathematical

studies. This pedagogical piece exhibits anecdotal evidence that such an approach

provides motivation to students, better preparation for ‘‘proofs’’ classes, and a desire

to pursue higher mathematics. Examples of calculus problems presented in the tradi-

tional fashion alongside subtly more precise presentations illustrate the process.

Keywords: Calculus, notation, differential.

1. INTRODUCTION

We confess: we love calculus. We became enamored of it as students, used it

in industry, and have each chosen to teach one or more sections almost every

year for a combined total of more than 60 years. We have contributed to

calculus texts [1], developed a calculus technology laboratory [14], mentored

others in the instruction of calculus [12, 24], published notes targeted at

university students who took AP calculus in high school [13], and followed

the literature on the reform of the subject [7, 8, 9, 10, 22]. Our love of the

subject is contagious, for we have consistently attracted students from our

calculus courses to take more mathematics, many continuing on to obtain

advanced degrees.

Why is it that we enjoy teaching this subject so much when there seems

to be so much discontent with the course from both students and faculty? Our

interest in teaching calculus is closely related to what we hope to accomplish

Address correspondence to W. Ted Mahavier, Department of Mathematics, Lamar

University, P. O. Box 10047, Beaumont TX 77706 USA. E-mail: ted.mahavier@

lamar.edu



D
ow

nl
oa

de
d 

B
y:

 [M
ah

av
ie

r, 
W

ill
ia

m
 S

.] 
A

t: 
22

:0
1 

17
 J

ul
y 

20
08

 

in the course. In addition to covering the standard syllabi, we hope to achieve

the following:

1. Ensure that both we and the students enjoy the class.

2. Attract more majors to our discipline.

3. Train our students in mathematical thinking.

4. Train our students to use the language in a concise and correct manner.

In this article we emphasize the last two goals, as it is our experience that the

fourth goal is a prerequisite to accomplishing the third goal, while the first

two goals are consequences thereof.

As with any course we teach, we begin by considering the students.

Many students who take calculus will not major in science or mathematics

and will not use the computational aspects of calculus in the future. What

good is such a course to them? For those majoring in the sciences or

engineering, what portion of calculus has value, aside from the computational

aspects that are rapidly being replaced by technology? We believe that the

material of calculus is well suited to introduce students to the process of

mathematical thinking, and that this process is valuable for all students,

regardless of discipline. Moreover, we find that many students entering

college have misconceptions about mathematics. Some plan to major in

mathematics, but will change their plans when they find out what college

mathematics is like. Others, like both authors, may come to college disliking

mathematics due to their high school experiences, but will go on to obtain

doctorates in mathematics as a result of their first college course.

In the September 2003 issue of the Notices of the American

Mathematical Society there was a letter to the Editor by Mikhail I.

Ostrovskii [20] and an article by Tony F. Chan [3]. Each expressed the

opinion that good students lose interest in mathematics as a result of their

calculus courses.

And Statistics from MAA’s 2004 CUPM Curriculum Guide [21] con-

tinue to delineate a decline in the number of majors over the past fifteen

years. We feel that mathematicians are won or lost on the battlefields of

calculus and that this is an excellent course for attracting majors by introdu-

cing students to the mathematical way of thinking.

This idea is neither new nor original. We first saw it expressed in the

introduction to Fundamental Analysis [18] that was used at the University of

Chicago in the mid 1940s. The author points out that it is difficult to argue

that knowledge of mathematics beyond arithmetic is needed for those who do

not enter scientific fields of study.

‘‘Certainly it cannot be said, except in the case of students who intend

later to enter scientific fields of study, that knowledge of abstract

numbers and their properties, or of abstract geometric figures and

350 Mahavier and Mahavier



D
ow

nl
oa

de
d 

B
y:

 [M
ah

av
ie

r, 
W

ill
ia

m
 S

.] 
A

t: 
22

:0
1 

17
 J

ul
y 

20
08

 

their properties, is essential for the pursuit of everyday life. Why, then,

the emphasis on algebra and geometry in public education? Educators,

politicians, newspaper editorial writers, and the man in the street are

generally agreed that if the study of these subjects has anything to offer

to all students, it is training in thinking.’’

In an article by Underwood Dudley in the College Mathematics Journal

[5], we find a similar sentiment expressed.

‘‘It is time to stop claiming that mathematics is necessary for jobs. It is

time to stop asserting that students must master algebra to be able to

solve problems that arise every day, at home or at work. It is time to

stop telling students that the main reason they should learn mathe-

matics is that it has applications. We should not tell our students lies.

They will find us out, sooner or later.’’

Both of these authors emphasize that it is the training in thinking that

makes mathematics valuable to all and we agree. This is not meant to imply

that we are advocating training in thinking at the expense of applications. To

the contrary, we believe applications form the basis for such training and are

key motivators for majors and non-majors alike. Indeed precision in the use

of language may well be more important in applications than in ‘‘pure’’

mathematics. But how does one provide training in thinking? We have

found that an effective way of doing this is by emphasizing the careful use

of notation and language when we give students problems to solve on their

own, with guidance if needed, but without the aid of numerous examples.

We believe that it is precisely this element of our courses that

encourages students to think more and to take more advanced mathematics

courses since most advanced courses are very precise in the use of the

mathematical language. Calculus should lay the foundation for this precision.

For majors, such precision is a field-specific imperative. For non-majors,

precision of language is surely a valuable skill and these students will likely

not take ‘‘transitions’’ or ‘‘proofs’’ courses to hone such a skill. What type of

problems do we propose? While we may rely on our own notes, most of the

time we use and assign problems from traditional texts [6, 25, 26, 27]. We

often introduce different notation and devote much time to be sure that

students understand exactly what they are being asked to do.

Our main theme is the need for attention, instruction, and practice in

developing accurate and precise use of language, especially in basic defini-

tions and notation in all courses, especially calculus. We require our students

to carefully define the meaning of any symbols they introduce in their work

and we convey to students who enjoy such depth that they may enjoy more

advanced mathematical courses. Thus our insistence on the precise use of

the language serves as a ‘‘carrot’’ to lure more students to take more

Importance of Precise Notation 351
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mathematics. As an added bonus to the careful use of language, we find that

students enjoy working on problems they completely understand. The alter-

native which we strive to avoid is described aptly by Selden and Selden [23]

who write, ‘‘. . . mathematics is now often learned in small, isolated bits,

which tend to be computational or procedural, devoid of conceptual under-

standing and largely useless in applications requiring much original

thought.’’

Several authors have written of the importance of our theme. Askey [2]

says ‘‘Do not lie to your students . . .’’ and ‘‘Words are important and their

meanings should not be changed without very good reasons.’’ Knisley [10]

says ‘‘Good theorems are the stuff of graduate courses. Good definitions are

the stuff of introductory calculus.’’ Krantz’s article [11] speaks to the careful

use of language in a lecture style calculus course. Two good mathematicians,

Karl Menger [15] and H. S. Wall [28] wrote calculus books that abandoned

the standard notation and used them in their courses, and each was highly

successful in attracting students to mathematics.

Our goal in this article is to share our approach to some of the

problems that experience tells us students enjoy working on with a deeper

level of understanding. These are problems where the careful use of

definitions and notation has motivated our students. Given the usual cal-

culus syllabus, there is not time to go deeply into every topic, and some

rote training may be appropriate. Still, we can at least distinguish in the

class that which we have done with rigor satisfying any mathematician

from that which we have accepted as standard practice or rote training. The

result of looking deeply at a few important concepts is a greater depth of

understanding of those concepts and a deeper understanding of the rigor

that will be expected in upper-level courses. We encourage those students

who enjoy the added rigor to take foundations, introductory algebra, or

introductory analysis courses as early as possible. We schedule our own

courses so that we have the opportunity to teach these follow-up classes, or

we direct students to other faculty who are reputed to inspire and motivate

the students.

We now proceed with a few examples to demonstrate how carefully we

use language in calculus. We also offer, at the end of each section, tidbits

from student evaluations which pleased us along with some of the methods

we have used to measure our success.

2. RELATED RATES

Related rates are an important part of calculus since they reinforce the rules

of differentiation and appear frequently in other disciplines. Our students

appreciate our careful use of notation and tell us that it helps them to under-

stand word problems. We find that our students’ abilities to work word

352 Mahavier and Mahavier
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problems are directly related to their ability to carefully define the variables

and functions from the problems. As an example, consider the following

classical problem.

Assume we have a runner, running at a constant rate of 24 feet per

second from home plate to 1st base on a baseball diamond. Suppose the

diamond is square with sides of length 90 feet. How fast is the distance

from the runner to 2nd base changing when the runner is half-way to 1st

base?

As you review our approach, note the careful attention to the domain of

the function, the chain rule, the functional notation, and the particular time of

interest in the problem.

1. Let T denote the time it takes the runner to run from home plate to 1st

base. Let x and y be the functions such that for each number t satisfying 0

� t � T, x(t) and y(t) are the distances in feet from the runner to 1st and 2nd

base respectively.

2. If 0 � t � T, then y2(t) = x2(t) + 902, so 2y(t)y¢(t) = 2x(t)x¢(t). Solving for y¢

yields y0ðtÞ ¼ xðtÞx0ðtÞ
yðtÞ .

3. Let t0 be the time when x(t0) = 45 and yðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
902 þ 452
p

¼ 45
ffiffiffi
5
p

.

4. We may conclude that y0ðt0Þ ¼
xðt0Þx0ðt0Þ

yðt0Þ
¼ 45ð�24Þ

45
ffiffiffi
5
p ¼ � 24ffiffiffi

5
p .

A note about the way the class is conducted may be appropriate at

this point. Before presenting steps (2) through (4) in the solution above,

we would set the stage by asking a number of questions of the students.

As one example, we might question the assumption of constant velocity

and have students sketch velocity functions that they believe to be

realistic. Our students often discover that if x¢ is constant then they

may solve directly for y and thus for y¢. This is what mathematics

educators refer to as a ‘‘teaching moment,’’ the opportunity to encou-

rage further explorations on the problem by considering a non-constant

function for x¢. Of course, we encourage such forays and students take

comfort in the fact that the two methods result in the same solution. In

the spring of 2005, three of our students gave presentations on just such

explorations at the Texas sectional meeting of the Mathematical

Association of America.

As you consider the traditional approach outlined below, note that each

of the symbols x, y and dy
dx

are used to represent different things in the same

problem. Each is used for both a function and a constant, that constant being

the value of the function at a given time. The student must distinguish the

appropriate meaning from the context.

Importance of Precise Notation 353
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1. Let x and y be the distance from the runner to 1st and 2nd base respectively.

2. Thus y2 = x2 + 902 and 2y
dy

dt
¼ 2x

dx

dt
.

3. Also
dy

dt
¼

x dx
dt

y
;

dx

dt
¼ �24, x = 45, and y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
902 � 452
p

¼ 45
ffiffiffi
5
p

.

4. Conclude:
dy

dt
¼ 45ð�24Þ

45
ffiffiffi
5
p ¼ �24ffiffiffi

5
p

After presenting the solution, one author warns the students that a common

error is to let x = 45 before computing dx
dt

instead of after, since this gives that
dx
dt
¼ 0. The problem to which the author refers is a direct result of the notation

since x sometimes denotes the function representing the distance from 1st base

and at other times represents the value of that function at a particular time. Our

point in using this example is to demonstrate how unlikely it would be for a

student to make this mistake using accurate notation.

In summary, we find that for student success, the notation used should

include careful definitions of the functions involved (especially domains) and

the time of interest (t0 in our example). For interesting reading on even more

distinct alternatives to the traditional approaches consider the papers of

Menger [16, 17].

2.1. Course Evaluation Technique

On the first day of the semester, pass out a blank sheet of paper and ask each

student to place a check if they are planning to minor, major, or double-major in

mathematics; have them place an ‘‘x’’ otherwise. Repeat the exercise on the last

day of class. We consistently find less than 10% checks on the first day and

more than 25% checks on the last day where both percentages are taken as a

percentage of the number of students on the first class day.

2.2. Course Evaluation Comments

In response to the phrase, ‘‘I believe the most effective part of the course

was,’’ one student wrote: ‘‘making us think independently about the work.’’

Under the category, ‘‘strengths,’’ one student wrote, ‘‘encourages students to

think on their own.’’

3. THE INDEFINITE INTEGRAL AND U-SUBSTITUTION

As soon as our students are computing derivatives, we begin posing questions

such as: Can you find an example of a function f so that f ¢(x) = x3? As the

354 Mahavier and Mahavier
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course progresses, we emphasize the chain rule with problems paralleling

most texts’ sections on indefinite integrals. Consider

Z
xffiffiffiffiffiffiffiffiffiffiffi

xþ 5
p dx:

In its place, before introducing the indefinite integral or u-substitution,

we would ask, Can you find an example of a function f so that

f 0ðxÞ ¼ xffiffiffiffiffiffiffi
xþ5
p for x > �5? With students already adept at ‘‘guessing’’ ele-

mentary antiderivatives, we take the following approach. Suppose we let

uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p

for all x > �5

so that

u0ðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p :

Then we have for all x > �5,

f 0ðxÞ ¼ 2u0ðxÞ � x
¼ 2u0ðxÞðu2ðxÞ � 5Þ
¼ 2u2ðxÞu0ðxÞ � 10u0ðxÞ:

If the chain rule has been properly emphasized, students will recognize and

suggest that

f ðxÞ ¼ 2

3
u3ðxÞ � 10uðxÞ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ 5Þ3

q
� 10

ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p� �

satisfies the desired property. After a student produces an antiderivative, we

will point out that adding any non-zero constant will produce a distinct

antiderivative. Once our students are adept at ‘‘guessing’’ antiderivatives by

using the chain rule, we familiarize them with traditional notation. Here is an

example where we tie our approach in with the traditional notation of the

indefinite integral, followed by a traditional approach. Notice how the alter-

native reinforces the chain rule.

Our approach to evaluate

Z
1ffiffiffiffiffiffiffiffiffiffiffi

xþ 5
p dx:

1. Let uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p

for all x > �5:

2. Thus u0ðxÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p and 2u0ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

xþ 5
p for all x > �5:

Importance of Precise Notation 355
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3. Conclude

Z
xffiffiffiffiffiffiffiffiffiffiffi

xþ 5
p dx ¼ 2

Z
u0ðxÞ u2ðxÞ � 5

� �
dx ¼ 2

u3ðxÞ
3
� 5uðxÞ

� �
þ k

¼ 2
1

3
ðxþ 5Þ

3
2 � 5

ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p� �

þ k:

Traditionally:

1. Let u ¼
ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p

:

2. Thus du ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p dx and 2du ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

xþ 5
p dx:

3. Conclude

Z
xffiffiffiffiffiffiffiffiffiffiffi

xþ 5
p dx ¼ 2

Z
ðu2 � 5Þ du

¼ 2

�
u3

3
� 5u

�
þ k ¼ 2

1

3
ðxþ 5Þ

3
2 � 5

ffiffiffiffiffiffiffiffiffiffiffi
xþ 5
p� �

þ k:

Why do we start out intentionally avoiding the well-established notation of

the indefinite integral? Because neither of us has seen a satisfactory definition

for this notation in a calculus text. Many texts define the indefinite integral,
R

f

(x) dx, as the class of all antiderivatives of f with respect to x, but with no

mention of domain. At least one text writes, ‘‘. . . one may simply think of
R

f(x)

dx as the antiderivative of f(x) with respect to x,’’ while another writes ‘‘
R

f (x)

dx = F(x) means F¢(x) = f(x).’’ From this definition, a student might note that

x2

2
þ 1 ¼

Z
x dx ¼ x2

2
þ 2

but of course cannot conclude that 2 = 1. Most texts follow their definition

with the standard formula,
R

1
x

dx ¼ lnðjxjÞ þ c: This represents one class

of antiderivatives but not all antiderivatives of the function f(x) = 1/x,

for all x 6¼ 0. Either

Z
1

x
dx ¼ ln xþ c for x > 0

or

Z
1

x
dx ¼ ln xþ c1 if x > 0

lnð�xÞ þ c2 if x < 0:

�

would be more accurate than what is traditionally written.

356 Mahavier and Mahavier
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Our belief is that each mathematical object should have a correct

definition and this definition should be used in a consistent manner

throughout the course. We now demonstrate how traditional u-substitution

contradicts this premise. Recall the typical definition for an indefinite

integral,

Definition 1:
R

f(x) dx represents the class of all anti-derivatives of the

function f, where dx denotes that the anti-differentiation is to be performed

with respect to the variable x.

This definition forces the variable with which the integration is to be

performed to be an independent (dummy) variable. When solving an indefi-

nite integral using a substitution such as x = sin(u), students are led to a

notation that is not consistent with this consequence of Definition 1. To see

this, consider the traditional approach to the problem

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx:

Traditionally:

1. Let x = sin(u) so that dx = cos(u) du.

2. Hence,

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx ¼

Z
cosðuÞ
cosðuÞ du ¼

Z
1 du . . .

When an author writes x = sin(u) in considering

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx we know that

x is the independent variable by definition of the indefinite integral.

Therefore u is the dependent variable and the statement ‘‘Let x = sin(u)’’

implicitly defines the function u(x) = arcsin(x) although it looks like one is

defining x as a dependent variable (function). The final indefinite integral in

line 2 is taken with respect to the function u and such an indefinite integral

has not yet been defined.

In our treatment of the problem, we start with the assumption that there

exists a function u so that sin(u(x)) = x for all x E (�1, 1). This makes clear

that u is the dependent variable and x is the independent variable.

Alternatively:

1. Suppose there is a function u so that sin(u(x)) = x for all x E (�1, 1).

2. Differentiating, we have cos(u(x)) u¢(x) = 1.

3. Hence,

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx ¼

Z
1

cosðuðxÞÞ cosðuðxÞÞu0ðxÞ dx ¼
Z

u0ðxÞ dx . . .

Importance of Precise Notation 357
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Our alternative works equally well for more interesting trigonometric substitutions

such as
R ffiffiffiffiffiffiffiffi

x2�1
p

x
dx. For this problem, assume that there is a function u such that

for each x � 1, x = sec(u(x)) so that sec2(u(x)) � 1 = tan2(x).

This approach results in a solution to the problem that encourages the

use of functional notation, reinforces the chain rule, uses the indefinite

integral in a way that is consistent with Definition 1, and does not require

the student to determine from context the independent and dependent

variables. This method allows us to work within the context of the

standard notation and also to utilize the power of u-substitution in finding

antiderivatives while making explicit the relationship between the depen-

dent and independent variables. The algorithmic procedure of u-substitu-

tion where the symbols are used in several contexts is contrary to a

consistent exposition of the subject, and easily remedied. Furthermore,

doing so reiterates the importance of the chain rule which becomes such a

powerful tool in the third semester of the subject. For additional

approaches, consider [4, 15, 28].

3.1. Course Evaluation Technique

Will a class conduct itself with the professor in absentia? One author was a

graduate student at The University of North Texas when his advisor asked

him to cover a class while he was away at a conference. When asked what

was to be covered, the advisor said, ‘‘They’ll cover the material, you just

watch and see that it is correct.’’ Upon watching the class carefully present

problems without their instructor present and with minimal input from the

official observer, the author began to modify his own courses. One author

now measures the success of the culture of a particular class by whether the

class will conduct itself in his absence. He will request an e-mail summary of

the class period from each student.

3.2. Course Evaluation Comments

In response to the phrase, ‘‘I believe the most effective part of the course was,’’

one student wrote: ‘‘The ability for the students to interact in class. I learn better

when I get involved.’’ In free response, one student wrote, ‘‘Despite the con-

fusing language of the text, the professor was very apt at explaining concepts.’’

4. CONCLUSION

It is the belief of the authors that the reform of calculus should serve to help

students learn to speak correctly about mathematical objects and to encou-

rage them to take more mathematics courses. We feel that simple and precise

358 Mahavier and Mahavier



D
ow

nl
oa

de
d 

B
y:

 [M
ah

av
ie

r, 
W

ill
ia

m
 S

.] 
A

t: 
22

:0
1 

17
 J

ul
y 

20
08

 

definitions, notation, and applications are one key component to attracting

minors and majors, preparing non-majors, and providing the ‘‘training in

thinking,’’ advocated by the quotes in the introduction.

Over the years many departments have introduced ‘‘bridge’’ or ‘‘transition’’

courses between calculus and the advanced courses that constitute the bulk of the

major. Such courses are intended to train students to use definitions, to read, to

understand, and to write correct mathematics. Given that the typical calculus

courses constitute between nine and twelve semester hours of the mathematics

taken by students majoring in mathematics, the sciences, or engineering, we

think that better use of language in calculus courses would facilitate the transition

to higher mathematics since students would already have been introduced to

carefully written and spoken mathematics. Indeed, traditional calculus courses

are potentially an impediment rather than a bridge to higher mathematics.

The decline in the number of majors and the need for transitional courses

seem to imply that we are not providing our calculus students with an indication

of what mathematics is really about. If true, this is unfortunate and unnecessary.

We do not propose that calculus students should be made to produce E – d
proofs, but they can be trained to read, interpret, and apply accurately written

definitions. This is little different from proving theorems in later courses.

Introducing our subject using the new materials and methods of the reform

movement alongside the precise notation and definitions advocated in this paper

should provide a powerful ally in preparing and recruiting students. Perhaps a

reform theme we can all agree on would be to present the subject in the way in

which we view it—as a beautiful, simple, precise and understandable one which

provides a stepping stone into numerous fields of advanced study.
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