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Abstract. Sobolev descent has long been established as an efficient method for
numerically solving boundary value problems, ordinary differential equations and
partial differential equations in a small number of iterations. We demonstrate that
for any linear ordinary differential equation with initial value conditions sufficient
to assure a unique solution, there exists a Hilbert space in which gradient descent
will converge to the solution in one iteration. We provide two elementary exam-
ples, one initial value problem and one boundary value problem, demonstrating the
effectiveness of the theory in numerical settings. As there are ample efficient nu-
merical methods for solving such problems, the significance of the paper is in the
approach and the question it raises. Namely, do such spaces exist for wider classes
of differential equations?
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1. Introduction

A general discussion of optimization techniques is given in [9] and [19]. Applying
steepest descent to solve differential equations was first introduced by Cauchy in
[3] and modifications such as conjugate gradient and variable metric methods were
later introduced in [6] to speed up the convergence of numerical implementations.
Sobolev descent is a systematic preconditioning technique where gradients are based
on Sobolev spaces determined by the problem at hand rather than on Euclidean
space. The method was introduced by Neuberger in [14]. Sufficient conditions for
convergence and a complete discussion of Sobolev descent may be found in [15].
The extension of the technique to singular ordinary differential equations by utilizing
weighted Sobolev spaces based on the problem at hand, [11], extends this work.
Problem specific applications of Sobolev descent are given in [4], [5], [7], [12], [13],
[18], [20] and [21]. In [10] a convergence proof is given for discrete spaces similar to
those in this paper. Existence and uniqueness arguments for singular problems in
Sobolev spaces are given in [2] and [22].
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The only example to date of a differential equation and a space in which convergence
occurs in one iteration is the minimal surface problem, [17]. Yet in each of the papers
cited above, the choice of the space is integral to the success of the method. This
fact is illustrated both by the well documented failure of descent methods based on
the Euclidean metric and the minimal number of iterations required when application
specific problems are solved in carefully constructed spaces as in the references above.
Thus the efficiency of the descent process, as measured in terms of the number of
iterations, is clearly dependent on the choice of the space. Is there an optimal space in
which to perform descent? We prove that for linear initial value problems the answer
is “yes” by creating the space and proving that convergence occurs in one iteration.
We demonstrate that the approach is computationally effective by numerically solving
one simple IVP. We then apply the numerical method to one simple BVP (Legendre’s)
to demonstrate that the numerical algorithm may also be applied effectively to BVPs.
MATLAB code is provided for the IVP and available upon request for the BVP.

General references for Sobolev spaces are [1] and [8].

2. Continuous Descent Space

Let I = [0, 1]. Fix n ∈ N. Let H = Hn,2
I and L = L2

I . Define ⟨·, ·⟩ and ∥·∥ to be the
inner product and norm, respectively, on L. Define ⟨·, ·⟩H and ∥·∥H to be the inner
product and norm, respectively, on H. Fix p0, p1, ..., pn−1 ∈ CI and define D : H → L
so that for each y ∈ H,

Dy = y(n) + pn−1y
(n−1) + ...+ p0y.

For each k = 1, 2, ..., n, define Bk : H → L such that Bky = y(k−1)(0) for every y ∈ H.
Define K : H → Ln+1 by

Ky = (Dy,B1y, ..., Bny) ∀ y ∈ H.

Let X = H. Define ⟨·, ·⟩X : X ×X → R by

⟨y, z⟩X = ⟨Ky,Kz⟩Ln+1 ∀ y, z ∈ X.

Define ∥·∥X : X → R≥0 by

∥y∥X =
√
⟨y, y⟩X ∀ y ∈ X.

We will show that (X, ⟨·, ·⟩X) defines a Hilbert space and that for any given f ∈ L
and g ∈ H, steepest descent based on the gradient induced by this inner product and
applied to ϕ : X → R where ϕ(y) = 1

2
∥Dy − f∥2 will converge in one iteration to the

unique solution of
Dy = f ; Bky = Bkg, ∀ k = 1, ..., n.

The heart of the paper is that once we have defined the gradient ∇Xϕ based on
our space (X, ⟨·, ·⟩X) we will have for any y ∈ X, that Dy = D∇Xϕ(y). From
this it follows immediately that ϕ(y − ∇Xϕ(y)) = 1

2
∥D(y − ∇Xϕ(y))∥2 = 1

2
∥Dy −

D∇Xϕ(y)∥2 = 0 and thus convergence to a solution is guaranteed in one iteration.

Theorem 2.1. (X, ⟨·, ·⟩X) defines a Hilbert space.
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Proof. It is easily shown that ⟨·, ·⟩X defines an inner product on X. In order to show
that (X, ⟨·, ·⟩X) is complete, fix y1, y2, ... to be Cauchy under ∥·∥X . It follows that
∥Dyi −Dyj∥ → 0 as i, j → ∞. Since L is complete, there exists f ∈ L so that
Dyi →L f as i → ∞. If k ∈ {1, 2, . . . , n} then the map Bk : H → L maps every
function to a constant function. Therefore, ∥Bkyi −Bkyj∥ → 0 as i, j → ∞ implies
that Bky1, Bky2, ... is Cauchy in R. For each k ∈ {1, 2, . . . , n} let bk ∈ R so that
Bkui → bk as i→ ∞. Defining y ∈ X so that Ky = (f, b1, ..., bn) we have

lim
i→∞

∥y − yi∥X = lim
i→∞

∥Ky −Kyi∥Ln+1 = lim
i→∞

[
∥f −Dyi∥ +

n∑
k=1

∥bk −Bkyi∥
]
= 0.

Since y ∈ X, we have that X is complete under ⟨·, ·⟩X . �

Lemmas 2.2, 2.3 and 2.4 define a projection which plays a crucial role in defining the
gradient upon which the descent process is based. Define Q = {Ky : y ∈ X} ⊆ Ln+1

and let Q⊥ denote the orthogonal complement of Q in Ln+1. Let

M =

{
(0, v1, ...vn) : vk ∈ CI and

∫
I

vk = 0∀ k = 1, 2, ..., n

}
.

Lemma 2.2. M ⊆ Q⊥.

Proof. Fix p = (g, b1, ..., bn) ∈ Q and q = (0, v1, ..., vn) ∈M . Then

⟨p, q⟩Ln+1 = ⟨g, 0⟩ +
n∑

k=1

⟨bk, vk⟩ =
n∑

k=1

∫ 1

0

bkvk =
n∑

k=1

bk

∫ 1

0

vk =
n∑

k=1

bk · 0 = 0.

�

Lemma 2.3. For every f ∈ L× (CI)
n there exists a unique pair (y, v) ∈ X ×M so

that Ky + v = f .

Proof. Fix f = (f0, f1, ..., fn) ∈ L× (CI)
n. For each k = 1, 2, . . . n let vk = fk −

∫
I
fk

and bk =
∫
I
fk. Let y satisfy Ky = (f0, b1, ..., bn). Thus Ky + v = (f0, b1, . . . , bn) +

(0, v1, . . . , vn) = (f0, b1 + v1, . . . , bn + vn). Since for each k = 1, 2, . . . n we have
that bk + vk =

∫
i
fk + (fk −

∫
i
fk) = fk, we have Ky + v = f . If (y, v), (z, w) ∈

X × M satisfy Ky + v = f and Kz + w = f then K(y − z) = −(v − w) so(
D(y − z), (y − z)(0), . . . (y − z)(n)(0)

)
= (0, v1 − w1, . . . , vn − wn) from which it fol-

lows that y = z and v = w. �

Define P : L × (CI)
n → Q so that for each f ∈ (CI)

n+1, Pf = Ky where y is
guaranteed by the proof of the previous theorem. Since Q and M are mutually
orthogonal and Q⊕M is dense in Ln+1, then Q⊕Q⊥ = Ln+1. Thus, we may extend
P by continuity so that P : Ln+1 → Q.

Lemma 2.4. P 2 = P and ⟨Pf, g⟩Ln+1 = ⟨f, Pg⟩Ln+1 for every f, g ∈ Ln+1.
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Proof. Fix f ∈ Ln+1. Let y ∈ X be the unique element which satisfies Pf = Ky.
Let z ∈ X be the unique element which satisfies P (Ky) = Kz. By definition of P ,
we may define v ∈ M to be the unique element so that Kz + v = Ky. Since z = y
and v = 0 satisfy Kz+ v = Ky, then z must be y and we have that Kz = Ky, hence
P 2f = Pf . Therefore P 2 = P .

Fix f = (f0, f1, ..., fn) and g = (g0, g1, ..., gn) to be elements of Ln+1. First note that
for any k, ⟨∫

I

fk, gk

⟩
=

∫
I

(∫
I

fk

)
gk =

(∫
I

fk

)∫
I

gk

=

(∫
I

gk

)∫
I

fk =

∫
I

(∫
I

gk

)
fk =

⟨
fk,

∫
I

gk

⟩
.

Then

⟨Pf, g⟩Ln+1 = ⟨f0, g0⟩ +
n∑

k=1

⟨∫
I

f, g

⟩

= ⟨g0, f0⟩ +
n∑

k=1

⟨
fk,

∫
I

gk

⟩
= ⟨f, Pg⟩Ln+1 .

�

Define the function π : Q → X so that π(Ky) = y for every y ∈ X. Fix f ∈ L and
b1, ..., bn ∈ R. Define ϕ : X → R by ϕ(y) = 1

2
∥Dy − f∥2 for every y ∈ X. Since X

and L are Hilbert spaces, for each y ∈ X, the map ϕ′(y) is a bounded linear functional
on both (L, ⟨·, ·⟩) and (X, ⟨·, ·⟩X). Hence, we may define ∇ϕ(y) and ∇Xϕ(y) so that
for every h ∈ X we have

⟨∇ϕ(y), h⟩ = ϕ′(y)h = ⟨∇Xϕ(y), h⟩X .

We now show that gradient descent within X preserves the initial conditions and
produces, in a single iteration, a zero of ϕ, yielding a solution to Ky = (f, b1, ..., bn).

Theorem 2.5. For every y ∈ X, the function u = y−∇Xϕ(y) satisfies ϕ(u) = 0 and
Bku = Bky, k = 1, ..., n.

Proof. Fix y ∈ X. Then for any h ∈ X we have

ϕ′(y)(h) = ⟨Dy − f,Dh⟩
= ⟨(Dy − f, 0, ..., 0) , Kh⟩Ln+1

2

= ⟨(Dy − f, 0, ..., 0) , P (Kh)⟩Ln+1
2

= ⟨P (Dy − f, 0, ..., 0) , Kh⟩Ln+1
2

= ⟨πP (Dy − f, 0, ..., 0) , π(Kh)⟩X
= ⟨πP (Dy − f, 0, ..., 0) , h⟩X
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Thus,∇Xϕ(y) = πP (Dy − f, 0, ..., 0). Define z ∈ X so thatKz = P (Dy − f, 0, ..., 0).
Then Dz = Dy− f and Bkz = 0 for every k ∈ {1, 2, . . . , n}. Moreover, z = π(Kz) =
∇Xϕ(y). Define u = y − z. Then

ϕ(u) = ϕ(y−z) = 1

2
∥D(y − z)− f∥2 = 1

2
∥Dy −Dz − f∥2 = 1

2
∥Dy − (Dy − f)− f∥2 = 0

and

Bku = Bk(y − z) = Bky −Bkz = Bky − 0 = Bky, ∀ k = 1, ..., n.

�

3. Discrete Example

Discrete Sobolev descent is detailed for general systems in [12] and we give only a
brief treatment here to demonstrate the single-step convergence. As there are ample
methods for solving linear initial value problems, the significance of the paper lies in
the existence of an inner product space where convergence occurs in a single iteration.

Consider y′′ + y = 0 on [a, b] = [0, 2π] with y(0) = 0 and y′(0) = 2. Let N be the
number of points in our partition of [a, b] and δ = b−a

N−1
. We first define the discrete

version of our differential operator Du = (D2 +D0)u = u′′ + u in the usual way. Let
D0 and D2 ∈ L(RN ,RN−2) satisfying

D0(x) =


x1+2x2+x3

4
...

xN−2+2xN−1+xN

4

 and D2(x) =


x1−2x2+x3

δ2
...

xN−2−2xN−1+xN

δ2

 .

Next, we define the discrete version of our initial conditions, Hu = (u(0), u′(0)). Let
H0 and H1 ∈ L(RN ,RN−2) such that

H0(x) =

x1...
x1

 and H1(x) =

x2−x1

δ
...

x2−x1

δ

 .

Let A = DtD+H t
0H0+H

t
1H1. Let ⟨·, ·⟩ represent the usual dot product and ⟨x, y⟩X =

⟨Dx,Dy⟩ + ⟨H0x,H0y⟩ + ⟨H1x,H1y⟩. Then for all x, y ∈ RN we have ⟨Ax, y⟩ =
⟨x, y⟩X . The discrete version of the operator ϕ from the previous section is given

by ϕ(y) = δ
2
∥Dy∥2 = δ

2

∑N−2
k=1 (Dy)

2
k. Applying the Riesz Representation Theorem in

these two inner product spaces we see that:

(1) For all x, y ∈ X, ⟨∇ϕ(x), y⟩ = ϕ′(x)(y) = δ ⟨Dx,Dy⟩ = δ ⟨DtDx, y⟩. Hence,
∇ϕ(y) = δDtDy.

(2) For all x, y ∈ X, ⟨∇ϕ(x), y⟩ = ϕ′(x)(y) = δ ⟨∇Xϕ(x), y⟩X = δ ⟨A∇Xϕ(x), y⟩.

Therefore ∇Xϕ and ∇ϕ are related by A∇Xϕ(x) = ∇ϕ(x) for any x ∈ X.
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Figure 1. y′′ + y = 0, y(0) = 0, y′(0) = 2, N = 10 and N = 1000

This simple application of the Riesz Representation Theorem allows us to compute
∇Xϕ(y) = πP (Dy, 0, ..., 0) by solving a sparse linear system without explicitly pro-
ducing either π or P . In the case where the partition of the interval has N elements
and D has order n, A is an N ×N matrix with 2n+ 1 non-zero diagonals.

Algorithm

(1) Choose an initial vector y satisfying the initial conditions.
(2) Define D for the differential equation.
(3) Define Hk, k = 1, 2, ..., n− 1 for the initial conditions.
(4) Compute the matrix, A = DtD +H t

0H0 +H t
1H1 + ...+H t

n−1Hn−1.
(5) Compute ∇ϕ(y) = DtDy.
(6) Solve A∇Xϕ(y) = ∇ϕ(y) for ∇Xϕ(y).
(7) Now s = y −∇Xϕ(y) is the (single-iteration) solution.

The graphs in Figure 1 show the initial function y0(t) = 2t on [0, 2π] and the resulting
solution after one iteration, y1(t) = 2 sin(t). We demonstrate the result using 10
divisions and 1000 divisions to demonstrate one of the more powerful features of
the method. When solving more difficult problems, for example partial differential
equations, it is significant that the algorithm provides reasonable precision on a very
small number of divisions. The graphs show the initial estimate (the straight line),
the approximate solution and the true solution, although on the second graph the
approximate and true solution are indistinguishable.

Assuming y is our approximate solution and z is the true solution, Table 1 lists:

(1) ϕ(y) = δ
2

∑N−2
k=1 (Dy)

2
k,

(2) the average absolute error, 1
N

∑N
k=1 |zk − yk|,

(3) the maximum absolute error, max {|zk − yk| : k = 1, 2, . . . , N − 2},
(4) the average divided difference error 1

N−1

∑N−2
k=1 |(Dy)k|, and

(5) the maximum divided difference error max {|(Dy)k| : k = 1, 2, . . . , N − 2}.
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Table 1. Numerical Results: u′′ + u = 0, u(0) = 0, u′(0) = 2

y′′ + y = 0 y(0) = 0 y′(0) = 2

Divisions ϕ(y) Avg Abs Err Max Abs Err Avg Div Err Max Div Err

N = 10 1.8× 10−28 2.4× 10−1 5.3× 10−1 5.6× 10−15 1.6× 10−14

N = 1000 1.1× 10−14 2.0× 10−5 4.4× 10−5 4.4× 10−8 1.2× 10−7

Table 2. Numerical Results: u′ − v = 0, v′ + u = 0, u(0) = 0, v(0) = 2

u′ − v = 0 v′ + u = 0 u(0) = 0 v(0) = 2

Divisions ψ(u, v) Avg Abs Err Max Abs Err Avg Div Err Max Div Err

N = 10 9.1× 10−30 3.9× 10−3 6.2× 10−3 3.6× 10−15 1.1× 10−14

N = 1000 1.6× 10−24 3.2× 10−7 5.0× 10−7 1.3× 10−12 5.5× 10−12

While the errors in Table 1 grow as the number of divisions grows, this feature is
managed more efficiently by solving the second order equation as the standard first
order system,

u′(t)− v(t) = 0, v′(t) + u(t) = 0, u(0) = 0, and v(0) = 2,

and minimizing the corresponding function ψ(u, v) = 1
2

(
∥u′ − v∥2 + ∥v′ + u∥2

)
. The

numerical results for the system are given in Table 2. A list of other experiments is
given in Section 5.

4. An Elementary Boundary Value Problem

While we do not develop theory for boundary value problems, we demonstrate a
parallel numerical approach which may be easily implemented for a wide variety of
boundary value problems. We consider Legendre’s equation

((1− t2)u′)′ + 2u = 0

on [0, 1] with boundary conditions u(0) = 0 and u(1) = 1, and u ∈ C2
I . General

solutions are of the form u(t) = c1t +
c2
2
t ln(1+t

1−t
) for some c1, c2 ∈ R and only

u(t) = t satisfies the given boundary conditions. The finite difference approximation
of Legendre’s equation is defined for the expanded form (1 − t2)u′′ − 2tu′ + 2u = 0.
Let N be the number of points in the uniform partition of [0, 1] and let δ = 1

N−1
.

Define D0 as in Section 3 and define the weighted operators D1, D2 ∈ L(RN ,RN−2)
so that

D1(x) =


δ(−x1+x3)

2δ
...

(N−1)δ(−xN−2+xN )

2δ

 and D2(x) =


(1−δ2)(x1−2x2+x3)

δ2
...

(1−((N−1)δ)2)(xN−2−2xN−1+xN )

δ2

 .
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Table 3. Numerical Results: Legendre’s

((1− t2)u′)′ + 2u = 0 u(0) = 0 u(1) = 1

Divisions ϕ(y) Avg Abs Err Max Abs Err Avg Div Err Max Div Err

N = 10 2.5× 10−27 5.2× 10−14 7.2× 10−14 6.5× 10−14 1.1× 10−13

N = 1000 1.9× 10−13 6.2× 10−7 1.0× 10−6 4.9× 10−7 9.9× 10−7

Let D = D2 − 2D1 + 2D0. Define H0 as in Section 3 and define H1 ∈ L(RN ,RN−2)
so that

H1(x) =

xN

δ
...

xN

δ


Let A = DtD + H t

0H0 + H t
1H1. The descent algorithm parallels the algorithm for

the IVP presented in Section 3, thus is not repeated here. Table 3 shows the results
obtained in one step starting with the initial function, y = sin(t)/sin(1). As with the
second order IVP, variational techniques as developed in [12] will resolve the increase
in error associated with the second-order divided differences.

5. Conclusions and Future Work

While the inner product is dependent on the uniqueness of solutions, even when
solving problems without initial conditions, numerical experiments are successful in
finding a solution. Thus, even in the case where the space is constructed only based
on a semi-inner product, the numerics still work.

Numerical experiments by the second author indicate that this process may be ex-
tended to a large class of differential equations under necessary and sufficient supple-
mentary conditions. The following is a list of such problems where machine precision
was obtained after a single iteration.

(1) Stieltjes integral condition: Fix c ∈ R and define g : [0, 1] → R to be strictly
increasing. The test problem is y′ = y on the interval [0, 1] under the restric-

tion
∫ 1

0
y dg = c.

(2) Singular ODEs: Fix c ∈ R. The test problem is ty′ = y, y(1) = c, on the
interval [0, 1].

(3) Laplace’s equation: The test problem is u11 + u22 = 0 on the domain [0, 1]2

under Dirichlet conditions restricting that the function satisfy given function
values on the boundary of [0, 1]2.

6. Appendix: MATLAB Code

% Solves y’’+ y = 0, y(0) = 0, y’(0)=2

function yppy

n = 10;
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a = 0;

b = 2*pi;

del = (b-a)/(n-1);

fprintf(’Start program\n’)

fprintf(’n = %d, a = %g, b = %g \n’,n,a,b)

t = linspace(a,b,n)’;

y = ones(size(t));

y = 2*t;

D0 = zeros(n-2,n);

D2 = zeros(n-2,n);

tmp0 = [1, 2, 1] / 4;

tmp2 = [1, -2, 1] / del / del;

for k=1:n-2

D0(k, k:k+2) = tmp0;

D2(k, k:k+2) = tmp2;

end

D = D2 + D0;

H0 = zeros(n-2,n);

H0(:,1) = 1;

H1 = zeros(n-2,n);

tmp1 = [-1,1]/del;

for k=1:n-2

H1(k, 1:2) = tmp1;

end

B=D’*D;

A = B + H0’*H0 + H1’*H1;

Euc_grad = B*y;

Sob_grad = linsolve(A, Euc_grad);

s = y - Sob_grad;

soln = zeros(size(t));

soln = 2*sin(t);

phi_err = 1/2*sum((D*s).^2)*del;

fprintf(’norm of Ds = %g \n’, phi_err);

avg_abs_err = sum( abs( soln-s ) )/n;

fprintf(’average absolute error = %g \n’, avg_abs_err);

max_abs_err = max( abs( soln-s ) );

fprintf(’max absolute error = %g \n’, max_abs_err);

avg_div_diff_err = sum( abs( D*s ) )/(n-1);

fprintf(’avg divided difference error = %g \n’, avg_div_diff_err);

max_div_diff_err = max( abs( D*s ) );

fprintf(’max divided difference error = %g \n’, max_div_diff_err);

plot(t,y,’r’, t,s,’g’, t, soln,’b’) % plot initial, approx, true

fprintf(’end program \n\n’);

end
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