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Abstract
The author’s work on solving singular ordinary differential equations

via steepest descent based on weighted Sobolev gradients is extended to
first order partial differential equations with linear singularities. Results
are presented which demonstrate the improvements obtained by comput-
ing based on weighted Sobolev gradients.

1 Introduction

A general discussion of optimization techniques is given in [9] and [15]. Applying
steepest descent to solve differential equations was first introduced by Cauchy in
[2] and modifications such as conjugate gradient and variable metric methods,
[6], were later introduced to speed up the convergence of numerical implementa-
tions. Sobolev descent is a systematic preconditioning technique where gradients
are based on Sobolev spaces determined by the problem at hand rather than on
Euclidean space. The method was introduced by J. W. Neuberger in [13] along
with sufficient conditions for convergence and a complete discussion of Soblev
descent may be found in [14]. The extension of the technique to singular or-
dinary differential equations by utilizing weighted Sobolev spaces based on the
problem at hand, [11], compliments and extends his work. In [10] a convergence
proof is given for discrete spaces such as those in this paper. Existence and
uniqueness arguments for singular problems in Sobolev spaces are given in [18]
and [3]. For a paper concerning Sobolev gradients which are constructed based
on the problem at hand, consider [16]. Problem specific applications of Sobolev
descent are given in, [4], [5], [7], [12] and [17]. General references for Sobolev
spaces are [1] and [8].
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2 Preliminaries

Let I = [0, 1], Ω ⊂ ℜ2, and L =
(
L2
Ω, ⟨·, ·⟩L

)
. Define π1, π2 : ℜ × ℜ → ℜ by

π1

(
α
β

)
= α and π2

(
α
β

)
= β. Suppose a, b ∈ C1

Ω vanish at only finitely many

points in Ω, u ∈ C1
Ω, and v⃗ = (v1, v2) is a vector valued function on ℜ2. We

make the following definitions:

∇u = (ux, uy) =
(

∂u
∂x ,

∂u
∂y

)
∇ · v⃗ = (v1)x + (v2)y
∇wu = (aux, buy)
∇w · v⃗ = a(v1)x + b(v2)y
∆u = ∇2u = ∇ · ∇u = uxx + uyy

∆wu = ∇2
wu = ∇w · ∇wu = a(aux)x + b(buy)y

(1)

Gw =

{(
u

∇wu

)
: u ∈ C1

Ω

}L×(L×L)

.

Definition 1 Hw is the collection of functions which appear as first coordinates
of elements of Gw.

Theorem 1 If a, b ∈ C1
Ω and a, b vanish at only finitely many points in Ω then

Gw is a function.

Proof. Let P denote the polynomials on Ω. Suppose

(
u
v

)
,

(
u
w

)
∈ Gw.

The linearity of Gw implies that

(
0

v − w

)
∈ Gw. Since there exists a sequence,

(uk)k∈N ∈ C1
Ω such that

(
uk

∇wuk

)
→
(

0
v − w

)
, it suffices to show that given(

0(
f
g

))
∈ Gw, we have

(
f
g

)
= 0 in L × L. Let

(
f
g

)
∈ Gw and (uk)k∈N

such that

(
uk

∇wuk

)
→

(
0(
f
g

))
. Let p, q ∈ P, F =

(
p
q

)
, and Fw =

(
ap
bq

)
.

|
⟨(

f
g

)
,

(
p
q

)⟩
L×L

| ≤ |
⟨(

f
g

)
−
(
a(uk)x
b(uk)y

)
,

(
p
q

)⟩
L×L

|+ |
⟨(

a(uk)x
b(uk)y

)
,

(
p
q

)⟩
L×L

|

≤ ∥
(
f
g

)
−
(
a(uk)x
b(uk)y

)
∥L×L ∥F∥L + |

∫
Ω

∇wuk · F |

= ∥
(
f
g

)
−
(
a(uk)x
b(uk)y

)
∥L×L ∥F∥L + |

∫
Ω

∇uk · Fw|
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≤ ∥
(
f
g

)
−
(
a(uk)x
b(uk)y

)
∥L×L ∥F∥L + |

∫
∂Ω

uk(Fw ·N)|+ |
∫
Ω

uk(∇ · Fw)|

≤ ∥
(
f
g

)
−
(
a(uk)x
b(uk)y

)
∥L×L ∥F∥L + |

∫
∂Ω

uk(Fw ·N)|+ ∥uk∥L ∥∇ · Fw∥L

As k → ∞, all three summands tend to zero, from which it follows that⟨(
f
g

)
,

(
p
q

)⟩
L×L

= 0 for all p, q ∈ P, a dense subset of L. q.e.d.

Define three operators on Hw by

E0(u) = u
Ea

1 (u) = π1Gwu
Eb

2(u) = π2Gwu.

Thus, Gwu =
(
Ea

1u,E
b
2u
)
is the generalized weighted gradient. If u ∈ C1

Ω then
Gwu = ∇wu. Define an inner product on Hw by

⟨u, v⟩Hw
= ⟨u, v⟩L + ⟨Ea

1 (u), E
a
1 (v)⟩L +

⟨
Eb

2(u), E
b
2(v)

⟩
L

The case a ≡ 1 ≡ b has been studied, [14]. Without regard to boundary
conditions, the spaces under consideration are H and Hw where H represents
the unweighted Sobolev space obtained when a ≡ 1 ≡ b.

Theorem 2 Gw is a closed, bounded, non-expansive, densely defined operator
on Hw.

Proof. Gw is closed by definition. Let P denote the polynomials on Ω. Since,
P is dense in L, and P ⊂ Gw ⊂ L, Gw is densely defined. For any u ∈ Hw,

∥Gwu∥L
∥u∥Hw

=
∥Gwu∥L

∥u∥L + ∥Gwu∥L
≤ 1,

thus Gw is bounded and non-expansive from Hw to L. q.e.d.

Theorem 3 Hw is a Hilbert space.

Proof. Let (un)n∈N be a Cauchy sequence in Hw. Thus

(
un

Gwun

)
n∈N

is a Cauchy sequence in Gw which is complete as a closed subspace of the

complete space, L × L. Let

(
f
g

)
∈ Gw such that

(
un

Gwun

)
n∈N

→
(
f
g

)
.

Now, (un)n∈N → f in Hw. q.e.d.
In order to develop gradients depending on the constraints we define the

following spaces dependent upon the boundary conditions.

Definition 2 Suppose B is a linear operator representing the boundary condi-
tions and put L0 = {u ∈ L : Bu = 0} and H0

w = Hw ∩ L0.
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Denote by πL : L → L0 the orthogonal projection under ⟨·, ·⟩L and denote
by πHw : Hw → H0

w the orthogonal projection under ⟨·, ·⟩Hw
.

The next definition is used to define gradients based on L,L0,H,H0,Hw, andH
0
w.

Definition 3 If S is any Hilbert space, J : S → ℜ is a bounded linear func-
tional, and s ∈ S, define ∇SJ(s) to be the unique element in S such that
J ′(s)(r) = ⟨∇sJ(s), r⟩S for all s ∈ S.

The following theorem, [12], guarantees convergence in the continuous set-
ting. Related convergence results for the discrete case are offered in [9] and
[13].

Theorem 4 (J. W. Neuberger) Suppose H and K are Hilbert spaces and G ∈
L(H,K). Suppose g ∈ K, v ∈ H, Gv = g, and ϕ(u) = 1

2∥Gu− g∥2 for every
u ∈ H. If x ∈ H and z is the function on [0,∞) so that

z(0) = x, z′(t) = −(∇ϕ)(z(t)), t ≥ 0

then u = limn→∞z(t) exists and Gu = g.

3 An Example

Consider the class of problems,

a, b ∈ C2
Ω

Ω = [0, 1]× [0, 1]
aux + buy = 0
u(x, x) = 2x2 ∀ x ∈ [0, 1].

(2)

Define the functional,

J(u) =
1

2

∫
Ω

(aux + buy)
2
dΩ.

The gradient on which descent is denoted by∇H0
w
J and is the unique element

in the Hilbert space H0
w which satisfies, J ′(u)(h) =

⟨(
∇H0

w
J
)
(u), h

⟩
for all

u, h ∈ H0
w as constructed via Definition 3. For all u ∈ Hw, h ∈ H0

w we have,

J ′(u)(h) = ⟨(∇HJ) (u), h⟩
= ⟨(∇HJ) (u), πHwh⟩
= ⟨πHw (∇HJ) (u), h⟩

Hence for all u, h ∈ H0
w,
⟨(
∇H0

w
J
)
(u), h

⟩
= ⟨πHw (∇HJ) (u), h⟩ and

(
∇H0

w
J
)
(u) =

πHw (∇HJ) (u).
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For u ∈ Hw define

J(u) =
1

2

∫
Ω

(Ea
1u+ Eb

2u)
2 dΩ.

The iteration is now,

uk+1 = uk − δk
(
∇H0

w
J
)
(uk)

where δk is given by the smallest positive real number that minimizes α(δk) =
J
(
uk − δk (∇HwJ) (u

k)
)
. Setting α′(δk) = 0 and solving yields the optimal step

size,

δk =
∥ (∇HwJ) (u

k)∥2Hw⟨
(∇Hw

J)
2
(uk), (∇Hw

J) (uk)
⟩
Hw

.

3.1 Numerical Considerations

Subdivide Ω into n pieces along each axis. Order the grid starting in the lower
left hand corner at (0, 0) so that ui,j = u( 1n (i− 1), 1

n (j − 1)).
Discrete versions of u, E0(u), E

a
1 (u), and Eb

2(u) are subscripted as matrices,
but are treated as vectors. Their definitions follow:

u =


u1,1

u2,1

...
un+1,n+1

 , E0(u) =


{E0(u)}1,1
{E0(u)}2,1

...
{E0(u)}n+1,n+1

 , Ew(u) =

E0(u)
Ea

1 (u)
Eb

2(u)

 .

E0


u1,1

u2,1

...
un+1,n+1




i,j

=
1

4
(ui,j + ui+1,j + ui,j+1 + ui+1,j+1)

Ea
1


u1,1

u2,1

...
un+1,n+1




i,j

=
n

4
(ai,j + ai+1,j)(−ui,j + ui+1,j − ui,j+1 + ui+1,j+1)

Eb
2


u1,1

u2,1

...
un+1,n+1




i,j

=
n

4
(bi,j + bi,j+1)(−ui,j − ui+1,j + ui,j+1 + ui+1,j+1)

The discretized versions of the spaces L and Hw are
(
ℜ(n+1)2 , ⟨·, ·⟩L

)
, and(

ℜ(n+1)2 , ⟨·, ·⟩Hw

)
where ⟨·, ·⟩L denotes the Euclidean inner product and ⟨u, v⟩Hw

=

⟨E0u,E0v⟩L + ⟨Ea
1u,E

a
1v⟩L +

⟨
Eb

2u,E
b
2v
⟩
L
.
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Discretizing our functional yields,

J(u) =
1

2

∫
Ω

(aux + buy)
2
dΩ

=
1

2

∫
Ω

(Ea
1u+ Eb

2u)
2
dΩ

∼=
1

2n2

n∑
i,j

({Ea
1u}i,j + {Eb

2u}i,j)2

The discrete analog to (∇LJ) is ∇J =


∂J

∂u1,1

∂J
∂u2,1

...
∂J

∂un+1,n+1

 . Four summands from

our functional, J, contribute to ∂J
∂up,q

.

∂J

∂up,q
=

1

2n2

∂

∂up,q

{ [
(Ea

1u)p−1,q−1 +
(
Eb

2u
)
p−1,q−1

]2

+

[
(Ea

1u)p, q−1 +
(
Eb

2u
)
p, q−1

]2

+

[
(Ea

1u)p−1,q +
(
Eb

2u
)
p−1,q

]2

+

[
(Ea

1u)p, q +
(
Eb

2u
)
p, q

]2 }

=
1

n2

{[
(Ea

1u)p−1,q−1 +
(
Eb

2u
)
p−1,q−1

][
n

4
(ap−1,q−1 + ap,q−1) +

n

4
(bp−1,q−1 + bp−1,q)

]
+[

(Ea
1u)p, q−1 +

(
Eb

2u
)
p, q−1

][
−n

4
(ap,q−1 + ap+1,q−1) +

n

4
(bp,q−1 + bp,q)

]
+[

(Ea
1u)p−1,q +

(
Eb

2u
)
p−1,q

][
n

4
(ap−1,q + ap,q)−

n

4
(bp−1,q + bp−1,q+1)

]
+[

(Ea
1u)p−1,q +

(
Eb

2u
)
p−1,q

][
−n

4
(ap,q + ap+1,q)−

n

4
(bp,q + bp,q+1)

] }
The two inner products are related by, ⟨u, v⟩Hw

= ⟨Au, v⟩L where A =

(E0)
t
E0 + (Ea

1 )
t
Ea

1 + (Eb
2)

t
Eb

2.

The canonical perturbation space will be ℜ(n+1)2

0 =
{
x ∈ ℜ(n+1)2 |Bx = 0

}
where B is the linear operator representing our boundary conditions. Let πHw :
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ℜ(n+1)2 → ℜ(n+1)2

0 denote the orthogonal projection under ⟨·, ·⟩Hw
and πL :

ℜ(n+1)2 → ℜ(n+1)2

0 denote the orthogonal projection under ⟨·, ·⟩L.

Applying the Reisz Representation Theorem twice and using the self-adjoint

property of projections repeatedly we have for every u ∈ ℜ(n+1)2 , h ∈ ℜ(n+1)2

0 ,

⟨πL(∇J)(u), h⟩L = ⟨(∇J)(u), πLh⟩L
= ⟨(∇J)(u), h⟩L
= J ′(u)(h)

= ⟨(∇HwJ) (u), h⟩Hw

= ⟨(∇HwJ) (u), πHwh⟩Hw

= ⟨πHw (∇HwJ) (u), h⟩Hw

=
⟨(
∇H0

w
J
)
(u), h

⟩
Hw

=
⟨
A
(
∇H0

w
J
)
(u), h

⟩
L

=
⟨
A
(
∇H0

w
J
)
(u), πLh

⟩
L

=
⟨
πLA

(
∇H0

w
J
)
(u), h

⟩
L

Consequently, πLA
(
∇H0

w
J
)
(u) = πL (∇LJ) (u) is valid for every u ∈ ℜ(n+1)2

and provides a linear system allowing us to solve for
(
∇H0

w
J
)
(u).

Solving for xi,j =
{(

∇H0
w
J
)
(u)
}
i,j

indicates that xi,j receives contributions

from eight of the nine non-zero bands of A that correspond to the eight “neigh-
bors” of xi,j , (i.e.xi−1,j−1, xi−1,j , ..., xi+1,j+1). We solve the system via SOR.

3.2 Results

The results in this section are for the equation,

yux − xuy = 0
u(x, x) = 2x2 ∀ x ∈ I

(3)

which has solution u(x, y) = x2 + y2. Tables 1 and 2 demonstrate two features
of the algorithm. First observe the significant improvements in the obtainable
accuracy by utilizing the weighted steepest descent. Second observe that the
results in Table 1 are based on a 10 x 10 grid and yet are representative of the
results (except for run time) in Table 2 which are based on a 50 x 50 grid.

The three rows represent descent based on the Eucliden, the non-weighted
and the weighted gradients respectively. The three columns represent the di-
vided difference error, the average absolute error, and the maximum absolute
error. If u represents the computed solution, then the divided difference error
is given by,

n∑
i,j

|{Ea
1u}i,j + {Eb

2u}i,j |/(n+ 1)2,
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Table 1: Singular Partial Differential Equation

yu1 − xu2 = 0 u(x,x) = 2x2 Grid = 10× 10

Gradient Iterations Seconds Div. Dif. Err. Avg. Abs. Err. Max. Abs. Err.

L 3, 031 0 : 10 10−5 10−4 7.1× 10−4

H 1, 315 0 : 18 10−5 10−4 6.6× 10−4

Hw 25 0 : 1 10−4 10−4 4.2× 10−4

Table 2: Singular Partial Differential Equation

yu1 − xu2 = 0 u(x,x) = 2x2 Grid = 50× 50

Gradient Iterations Min:Sec Div. Dif. Err. Avg. Abs. Err. Max. Abs. Err.

L 46, 282 62 : 20 10−5 10−4 2.1× 10−3

H 1, 334 10 : 23 10−4 10−4 2.1× 10−3

Hw 25 5 : 04 10−4 10−5 7.6× 10−4

while the average absolute error is given by,

n∑
i,j

|ui,j − 2
1

n
(i− 1)

1

n
(j − 1)|/(n+ 1)2.

4 Conclusions

The algorithm gives good results on a small number of divisions making the
algorithm a candidate for multi-grid methods.

Improvements to the algorithm as presented would be to incorporate multi-
grid techniques, appropriate SOR constants, and conjugate gradient technology.

A “C” code for the algorithm may be obtained from the author along with
a Mathematica code for computation of the matrices involved.

Preliminary investigations indicate that the method extends to second order
equations such as:

f(u) = λu+ u3

Ω = Cl(B[0, 1])
∆u+ f(u) = 0
u|∂Ω = 0.

(4)
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