Section Practice
¶These are practice problems for the tests. Solutions are in the next section. While we will not present these, I am happy to answer questions about them in class.
- 
Graph these functions and their derivatives. - \(F(x)=-x^{2}+5\) 
- \(h(x) = x^3 - 9x\) 
- \(f(x)=\cos(2x)\) 
- \(g(t)=|2+3t|\) 
 
- 
Compute the derivative of each function. - \(\dsp g(t)=\sqrt{3t}+\frac{3}{t}-\frac{5}{t^{3}}\) 
- \(z(t) = (x^2+1)(x^3+2x)\) 
- \(\dsp y = \frac{2x^3+x}{2-x^2}\) 
- \(g(t)=(2t^{2}-5t^{8}+4t)^{12}\) 
- \(F(z)=\sqrt[3]{2z+7z^{3}}\) 
 
- 
Compute and simplify the derivatives of these exponential and logarithmic functions. - \(a(x) = 12-e^{x^2}\) 
- \(b(x) = \ln(x^2)\) 
- \(c(x) = e^{\sqrt{x^2-1}}\) 
- \(d(x) = x\ln(x^3)\) 
- \(\dsp g(t)=\frac{t+e^{t}}{3t^{2}-10t+5}\) 
- \(\dsp f(t) = \frac{1+t}{e^{t}}\) 
- \(n(x) = \ln(xe^{x^2})\) 
 
- 
Compute and simplify the derivatives of these trigonometric functions. - \(C(\beta )=3\beta \cos(5\beta)\) 
- \(H(x)=(5x^{2}+x)(4x^{4}+\tan(x))\) 
- \(o(x) = \csc(x)\cot(x)\) 
- \(p(x) = \sin(\cos(x))\) 
- \(r(x) = \left(\sin(x)/x \right)^3\) 
- \(i(x) = \sin^3(x)/x^3\) 
 
- 
Compute and simplify the derivatives of these mixed functions. - \(g(t) = t\sin(t)e^t\) 
- \(h(x) = \tan(x^3-3x)\) 
- \(k(t) = \invcos(x^2+3x)\) 
- \(m(x) = \invsin(5x)\) 
- \(\dsp q(t) = e^{\sec(t^2-2t)}\) 
- \(\dsp s(x) = 3^x + x^3\) 
- \(\dsp t(y) = 2^{y^2-3y}\) 
- \(\dsp u(x) = x3^{\sin(x)}\) 
- \(\dsp G(x)=(x+1)^{\sin(x)}\) 
 
- 
Each hyperbolic trigonometric function is defined. Verify that each stated derivative is correct. - Definition: \(\dsp \sinh(x)=\frac{e^{x}-e^{-x}}{2} \;\;\;\;\;\;\;\;\) Show: \((\sinh(x))'=\cosh(x)\) 
- Definition: \(\dsp \cosh(x)=\frac{e^{x}+e^{-x}}{2}\;\;\;\;\;\;\;\;\) Show: \((\cosh(x))'=\sinh(x)\) 
- Definition: \(\dsp \tanh(x)=\frac{\sinh(x)}{\cosh(x)} \;\;\;\;\) Show: \((\tanh(x))'=\sech^{2}(x)\) 
- Definition: \(\dsp \csch(x)=\frac{1}{\sinh(x)} \;\;\;\;\) Show: \((\csch(x))'=-\csch(x)\coth(x)\) 
- Definition: \(\dsp \sech(x)=\frac{1}{\cosh(x)} \;\;\;\;\) Show: \((\sech(x))'=-\sech(x)\tanh(x)\) 
- Definition: \(\dsp \coth(x)=\frac{1}{\tanh(x)} \;\;\;\;\) Show: \((\coth(x))'=-\csch ^{2}(x)\) 
 
- Show that \(\invsinh(x)=\ln(x+\sqrt{x^{2}+1}).\) 
- Show that \(\dsp (\invsinh(x))'=\frac{1}{\sqrt{x^{2}+1}}\text{.}\) 
- Compute the slope of the tangent line to \(\dsp f(x)=\frac{2x}{2^{x}}\) when \(x=0\text{.}\) 
- Compute the equation of the tangent line to \(g(x)=x\tan(x)\) when \(x=\frac{\pi}{3}\text{.}\)